Created
April 19, 2020 22:12
-
-
Save enric1994/bfff235e82e3741ca66b4a441b8a0380 to your computer and use it in GitHub Desktop.
Pytorch Dataloader boilerplate
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import os | |
import torch | |
from skimage import io | |
import numpy as np | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms, utils | |
import json | |
from sklearn import preprocessing | |
from PIL import Image | |
class CountingDataset(Dataset): | |
def __init__(self, input_path, output_path, transform=None): | |
labels = [] | |
image_paths =[] | |
labels_files = os.listdir(input_path) | |
for l in labels_files: | |
with open(os.path.join(input_path, l)) as f: | |
data=json.load(f) | |
image_name = data['global']['scene_name'] | |
image_path = os.path.join(output_path, image_name, 'original', '00000000.png') | |
image_paths.append(image_path) | |
count = len(data['objects']) | |
labels.append(count) | |
self.dataset = list(zip(image_paths, labels)) | |
self.transform = transform | |
def __len__(self): | |
return len(self.dataset) | |
def __getitem__(self, idx): | |
image = Image.open(self.dataset[idx][0]).convert('RGB') | |
label_id = self.dataset[idx][1] | |
if self.transform: | |
image = self.transform(image) | |
return image, label_id | |
class DatasetFromSubset(Dataset): | |
def __init__(self, subset, transform=None): | |
self.subset = subset | |
self.transform = transform | |
def __getitem__(self, index): | |
x, y = self.subset[index] | |
if self.transform: | |
x = self.transform(x) | |
return x, y | |
def __len__(self): | |
return len(self.subset) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment