Last active
September 16, 2023 16:23
-
-
Save entron/b9bc61a74e7cadeb1fec to your computer and use it in GitHub Desktop.
Keras implementation of Kim's paper "Convolutional Neural Networks for Sentence Classification" with a very small embedding size. The test accuracy is 0.853.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''This scripts implements Kim's paper "Convolutional Neural Networks for Sentence Classification" | |
with a very small embedding size (20) than the commonly used values (100 - 300) as it gives better | |
result with much less parameters. | |
Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_cnn.py | |
Get to 0.853 test accuracy after 5 epochs. 13s/epoch on Nvidia GTX980 GPU. | |
''' | |
from __future__ import print_function | |
import numpy as np | |
np.random.seed(1337) # for reproducibility | |
from keras.preprocessing import sequence | |
from keras.models import Graph | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.embeddings import Embedding | |
from keras.layers.convolutional import Convolution1D, MaxPooling1D | |
from keras.datasets import imdb | |
from keras.utils.np_utils import accuracy | |
# set parameters: | |
max_features = 5000 # vocabulary size | |
maxlen = 100 # maximum length of the review | |
batch_size = 32 | |
embedding_dims = 20 | |
ngram_filters = [3, 5, 7] | |
nb_filter = 1200 # number of filters for each ngram_filter | |
nb_epoch = 5 | |
# prepare data | |
print('Loading data...') | |
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features, | |
test_split=0.2) | |
print(len(X_train), 'train sequences') | |
print(len(X_test), 'test sequences') | |
print('Pad sequences (samples x time)') | |
X_train = sequence.pad_sequences(X_train, maxlen=maxlen) | |
X_test = sequence.pad_sequences(X_test, maxlen=maxlen) | |
print('X_train shape:', X_train.shape) | |
print('X_test shape:', X_test.shape) | |
# define model | |
model = Graph() | |
model.add_input(name='input', input_shape=(maxlen,), dtype=int) | |
model.add_node(Embedding(max_features, embedding_dims, input_length=maxlen), name='embedding', input='input') | |
model.add_node(Dropout(0.), name='dropout_embedding', input='embedding') | |
for n_gram in ngram_filters: | |
model.add_node(Convolution1D(nb_filter=nb_filter, | |
filter_length=n_gram, | |
border_mode='valid', | |
activation='relu', | |
subsample_length=1, | |
input_dim=embedding_dims, | |
input_length=maxlen), | |
name='conv_' + str(n_gram), | |
input='dropout_embedding') | |
model.add_node(MaxPooling1D(pool_length=maxlen - n_gram + 1), | |
name='maxpool_' + str(n_gram), | |
input='conv_' + str(n_gram)) | |
model.add_node(Flatten(), | |
name='flat_' + str(n_gram), | |
input='maxpool_' + str(n_gram)) | |
model.add_node(Dropout(0.), name='dropout', inputs=['flat_' + str(n) for n in ngram_filters]) | |
model.add_node(Dense(1, input_dim=nb_filter * len(ngram_filters)), name='dense', input='dropout') | |
model.add_node(Activation('sigmoid'), name='sigmoid', input='dense') | |
model.add_output(name='output', input='sigmoid') | |
print(model.summary()) | |
# train model | |
model.compile(loss={'output': 'binary_crossentropy'}, optimizer='rmsprop') | |
model.fit({'input': X_train, 'output': y_train}, | |
batch_size=batch_size, | |
nb_epoch=nb_epoch, | |
validation_data={'input': X_test, 'output': y_test}) | |
acc = accuracy(y_test, | |
np.round(np.array(model.predict({'input': X_test}, | |
batch_size=batch_size)['output']))) | |
print('Test accuracy:', acc) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
It has been so long and I can't remember now. Maybe it was as a legacy code when I used to test different dropout values and it turned out it's better not using dropout at all.