Created
December 24, 2017 04:21
-
-
Save ephemient/58be54215a7c39282a4e052a455e4dce to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import heapq | |
import sys | |
if sys.version_info >= (3, 0): | |
xrange = range | |
def is_prime_trial_division(n): | |
"""Prime checking by trial division, checking only odds up to sqrt(n). | |
>>> is_prime_trial_division(2) | |
True | |
>>> is_prime_trial_division(3) | |
True | |
>>> is_prime_trial_division(4) | |
False | |
>>> is_prime_trial_division(16129) | |
False | |
>>> is_prime_trial_division(16381) | |
True | |
""" | |
if n < 2: | |
return False | |
if n == 2: | |
return True | |
if n % 2 == 0: | |
return False | |
d = 3 | |
while d * d <= n: | |
if n % d == 0: | |
return False | |
d += 2 | |
return True | |
def is_prime_sieve(n): | |
"""Prime checking by building a Sieve of Eratosthenes. | |
Ideally, you would build the sieve up to the maximum number to be tested, | |
and re-use it for testing a range of numbers. | |
>>> is_prime_sieve(2) | |
True | |
>>> is_prime_sieve(3) | |
True | |
>>> is_prime_sieve(4) | |
False | |
>>> is_prime_sieve(31) | |
True | |
>>> is_prime_sieve(16129) | |
False | |
>>> is_prime_sieve(16381) | |
True | |
""" | |
if n < 2: | |
return False | |
if n == 2: | |
return True | |
if n % 2 == 0: | |
return False | |
sieve = [True] * (n // 2 + 1) | |
for i in xrange(3, n // 3 + 1, 2): | |
if not sieve[i // 2]: | |
continue | |
for j in xrange(3 * i, n + 1, 2 * i): | |
sieve[j // 2] = False | |
return sieve[n // 2] | |
def is_prime_sieve_iterative(n): | |
"""Prime checking with a modified sieve. Instead of filling out the whole | |
sieve at once, only keep track of the next multiple of each confirmed prime. | |
>>> is_prime_sieve_iterative(2) | |
True | |
>>> is_prime_sieve_iterative(3) | |
True | |
>>> is_prime_sieve_iterative(4) | |
False | |
>>> is_prime_sieve_iterative(31) | |
True | |
>>> is_prime_sieve_iterative(16129) | |
False | |
>>> is_prime_sieve_iterative(16381) | |
True | |
""" | |
if n < 2: | |
return False | |
if n in (2, 3): | |
return True | |
if n % 2 == 0: | |
return False | |
sieve = [(3, 9)] | |
for i in xrange(5, n, 2): | |
is_prime = True | |
while True: | |
j, prime = sieve[0] | |
if i < j: | |
break | |
is_prime = False | |
heapq.heapreplace(sieve, (j + 2 * prime, prime)) | |
if is_prime: | |
heapq.heappush(sieve, (3 * i, i)) | |
return n < sieve[0][0] | |
if __name__ == '__main__': | |
import doctest | |
doctest.testmod() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment