Created
February 17, 2017 11:15
-
-
Save epiception/ac8195435976f6d2356869589b7157de to your computer and use it in GitHub Desktop.
Kalman filtering for selected points in an image using OpenCV cv2.kalmanFilter class in Python. Returns predicted points.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
'''KALMAN FILTERING CLASS FOR N 2D POINTS''' | |
'''Kalman filtering for selected points in an image using OpenCV cv2.kalmanFilter class in Python ''' | |
class Kalman_Filtering: | |
def __init__(self,n_points): | |
self.n_points = n_points | |
def initialize(self): | |
n_states = self.n_points * 4 | |
n_measures = self.n_points * 2 | |
self.kalman = cv2.KalmanFilter(n_states,n_measures) | |
kalman = self.kalman | |
kalman.transitionMatrix = np.eye(n_states, dtype = np.float32) | |
#kalman.processNoiseCov = np.eye(n_states, dtype = np.float32)*0.9 | |
kalman.measurementNoiseCov = np.eye(n_measures, dtype = np.float32)*0.0005 | |
kalman.measurementMatrix = np.zeros((n_measures,n_states), np.float32) | |
dt = 1 | |
self.Measurement_array = [] | |
self.dt_array = [] | |
for i in range(0,n_states,4): | |
self.Measurement_array.append(i) | |
self.Measurement_array.append(i+1) | |
for i in range(0,n_states): | |
if i not in self.Measurement_array: | |
self.dt_array.append(i) | |
print(self.dt_array) | |
print(self.Measurement_array) | |
#Transition Matrix for [x,y,x',y'] for n such points | |
# format of first row [1 0 dt 0 .....] | |
for i, j in zip(self.Measurement_array, self.dt_array): | |
kalman.transitionMatrix[i,j] = dt; | |
#Measurement Matrix for [x,y,x',y'] for n such points | |
# format of first row [1 0 0 0 .....] | |
for i in range(0,n_measures): | |
kalman.measurementMatrix[i,self.Measurement_array[i]] = 1 | |
print('TRANSITION Matrix:') | |
print(kalman.transitionMatrix) | |
print('MEASUREMENT Matrix:') | |
print(kalman.measurementMatrix) | |
def predict(self,points): | |
pred = [] | |
input_points = np.float32(np.ndarray.flatten(points)) | |
#Correction Step | |
self.kalman.correct(input_points) | |
#Prediction step | |
tp = self.kalman.predict() | |
for i in self.Measurement_array: | |
pred.append(int(tp[i])) | |
return pred | |
''' | |
USAGE: points must be a 2d numpy array of points, e.g. | |
input points are: | |
[[ x1. y1.] | |
[ x2. y2.] | |
[ x3. y3.] | |
[ x4. y4.] | |
[ x5. y5.] | |
[ x6. y6.]] | |
import kalman_class | |
kf = kalman_class.Kalman_Filtering(6) | |
kf.initialize() | |
... | |
... | |
kf.predict(points) | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment