Created
December 28, 2018 08:58
-
-
Save eponkratova/ceb33e162806c1052dc1e59cf6375823 to your computer and use it in GitHub Desktop.
initiating_dea
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DEA(object): | |
random.seed(5) | |
def __init__(self, inputs, outputs): | |
""" | |
Initialize the DEA object with input data | |
n = number of entities (observations) | |
m = number of inputs (variables, features) | |
r = number of outputs | |
:param inputs: inputs, n x m numpy array | |
:param outputs: outputs, n x r numpy array | |
:return: self | |
""" | |
# supplied data | |
self.inputs = inputs | |
self.outputs = outputs | |
# parameters | |
self.n = inputs.shape[0] | |
self.m = inputs.shape[1] | |
self.r = outputs.shape[1] | |
# iterators | |
self.unit_ = range(self.n) | |
self.input_ = range(self.m) | |
self.output_ = range(self.r) | |
# result arrays | |
self.output_w = np.zeros((self.r, 1), dtype=np.float) # output weights | |
self.input_w = np.zeros((self.m, 1), dtype=np.float) # input weights | |
self.lambdas = np.zeros((self.n, 1), dtype=np.float) # unit efficiencies | |
self.efficiency = np.zeros_like(self.lambdas) # thetas | |
# names | |
self.names = [] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment