Last active
July 5, 2025 05:04
-
-
Save eqy/c8f111e684dc316de78581f4b4d2296b to your computer and use it in GitHub Desktop.
softmax.cu
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
inp = torch.rand(4096, 65536, device='cuda') | |
for _ in range(10): | |
torch.softmax(inp, dim=1) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cuda_runtime.h> | |
#include <math_constants.h> | |
#include <curand_kernel.h> | |
#include <stdio.h> | |
#include <cuda_runtime.h> | |
#include <math_constants.h> | |
// Numerically stable softmax kernel (three-pass) | |
extern "C" __global__ void softmax_kernel( | |
const float* input, | |
float* output, | |
int batch_size, | |
int num_features) | |
{ | |
int batch_idx = blockIdx.x; | |
int tid = threadIdx.x; | |
if (batch_idx >= batch_size) return; | |
const float* input_row = input + batch_idx * num_features; | |
float* output_row = output + batch_idx * num_features; | |
// Shared memory for reduction operations | |
extern __shared__ float shared_mem[]; | |
float* max_vals = shared_mem; | |
float* sum_vals = shared_mem + blockDim.x; | |
// Pass 1: find maximum for numerical stability | |
float thread_max = -CUDART_INF_F; | |
for (int i = tid; i < num_features; i += blockDim.x) { | |
thread_max = fmaxf(thread_max, input_row[i]); | |
} | |
max_vals[tid] = thread_max; | |
__syncthreads(); | |
// Reduce to global max | |
for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) { | |
if (tid < stride) { | |
max_vals[tid] = fmaxf(max_vals[tid], max_vals[tid + stride]); | |
} | |
__syncthreads(); | |
} | |
float row_max = max_vals[0]; | |
__syncthreads(); | |
// Pass 2: compute exponentials and local sum | |
float thread_sum = 0.0f; | |
for (int i = tid; i < num_features; i += blockDim.x) { | |
float exp_val = expf(input_row[i] - row_max); | |
output_row[i] = exp_val; | |
thread_sum += exp_val; | |
} | |
sum_vals[tid] = thread_sum; | |
__syncthreads(); | |
// Reduce to global sum | |
for (int stride = blockDim.x / 2; stride > 0; stride >>= 1) { | |
if (tid < stride) { | |
sum_vals[tid] += sum_vals[tid + stride]; | |
} | |
__syncthreads(); | |
} | |
float row_sum = sum_vals[0]; | |
__syncthreads(); | |
// Pass 3: normalise | |
for (int i = tid; i < num_features; i += blockDim.x) { | |
output_row[i] /= row_sum; | |
} | |
} | |
__global__ void fill_rand(float* out, size_t n, unsigned long long seed = 1234) | |
{ | |
const int idx = blockIdx.x * blockDim.x + threadIdx.x; | |
if (idx >= n) return; | |
// one RNG state per thread, init cheaply | |
curandStatePhilox4_32_10_t state; | |
curand_init(seed, idx, /*subseq=*/0, &state); | |
out[idx] = curand_uniform(&state); // in (0,1] | |
} | |
// host helper: launch & synctiny | |
void gen_random(float* d_out, size_t n) | |
{ | |
int threads = 256; | |
int blocks = (n + threads - 1) / threads; | |
fill_rand<<<blocks, threads>>>(d_out, n); | |
cudaDeviceSynchronize(); | |
} | |
float* input; | |
float* output; | |
size_t batch_size = 4096; | |
size_t num_features = 65536; | |
size_t n = batch_size*num_features; | |
size_t threads = 1024; | |
cudaMalloc(&input, n*sizeof(float)); | |
cudaMalloc(&output, n*sizeof(float)); | |
gen_random(input, n); | |
cudaDeviceSynchronize(); | |
printf("CUDA Error: %s\n", cudaGetErrorString(cudaGetLastError())); | |
for (int i = 0; i < 10; i++) | |
softmax_kernel<<<batch_size, threads, 2*threads*sizeof(float)>>>(input, output, batch_size, num_features); | |
cudaDeviceSynchronize(); | |
printf("CUDA Error: %s\n", cudaGetErrorString(cudaGetLastError())); | |
cudaFree(input); | |
cudaFree(output); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment