-
-
Save eramax/c190fd3ad6f142037d2ef1c0e6711b50 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import transformers | |
model_name = 'Intel/neural-chat-7b-v3-1' | |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
def generate_response(system_input, user_input): | |
# Format the input using the provided template | |
prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n" | |
# Tokenize and encode the prompt | |
inputs = tokenizer.encode(prompt, return_tensors="pt") | |
# Generate a response | |
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract only the assistant's response | |
return response.split("### Assistant:\n")[-1] | |
# Example usage | |
system_input = "Please answer all questions to the best of your ability." | |
user_input = "How does the neural-chat-7b-v3-1 model work?" | |
response = generate_response(system_input, user_input) | |
# Generate | |
print(response) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment