Skip to content

Instantly share code, notes, and snippets.

@erap129
Last active September 27, 2021 07:48
Show Gist options
  • Select an option

  • Save erap129/1d25a97ab3ef1eca60ec54b58ac17e0d to your computer and use it in GitHub Desktop.

Select an option

Save erap129/1d25a97ab3ef1eca60ec54b58ac17e0d to your computer and use it in GitHub Desktop.
NASA RUL project - data preparation
train_df.drop(columns=[f'sensor_{i}' for i in [3, 4, 8, 9, 13, 19, 21, 22]], inplace=True, errors='ignore')
RUL = train_df.groupby('unit_number').apply(lambda group_df:
pd.concat([group_df['time'].max() - group_df['time'], group_df['time']], axis=1)).\
reset_index().drop(columns=['level_1'])
RUL.columns = ['unit_number', 'RUL', 'time']
train_df = pd.merge(train_df, RUL, left_on=['unit_number', 'time'], right_on=['unit_number', 'time'])
X_train = train_df[[x for x in train_df.columns if 'sensor_' in x]].values
y_train = train_df['RUL'].values.clip(max=125)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment