Last active
June 7, 2022 17:53
-
-
Save erap129/3040d43599560ad8ca0829f4db97352f to your computer and use it in GitHub Desktop.
recsys_user_knn_occupation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_user_sim_values(train_set): | |
users_age_gender = (users_df. | |
assign(inner_id=lambda df: df['user_id'].apply(lambda x: train_set.to_inner_uid(x)), | |
gender=lambda df: df['gender'].replace({'M': 0, 'F': 1}).astype('int')). | |
sort_values('inner_id'). | |
filter(items=['age', 'gender']) | |
) | |
user_values_np = StandardScaler().fit_transform(users_age_gender.to_numpy()) | |
cosine_sim_user_values = cosine_similarity(user_values_np, user_values_np) | |
return cosine_sim_user_values | |
cosine_sim_user_values_trainset = get_user_sim_values(trainset) | |
cosine_sim_user_values_train_loocv = get_user_sim_values(train_loocv) | |
get_algorithm_report(CustomSimKNNAlgorithm, trainset, testset, train_loocv, test_loocv, movies_df, | |
target_movie_id='movie_1', target_user_id='user_1', top_k=10, | |
algo_kwargs_trainset=dict(similarities=None, | |
sim_options={'user_based': True}), | |
algo_kwargs_trainset_loocv=dict(similarities=cosine_sim_user_values_train_loocv, | |
sim_options={'user_based': True}), calc_most_similar=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment