Created
September 27, 2021 07:54
-
-
Save erap129/9cde0495e13aa26cf46b1997fe1e58e7 to your computer and use it in GitHub Desktop.
NASA RUL project - baseline performance
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
test_df.drop(columns=[f'sensor_{i}' for i in [3, 4, 8, 9, 13, 19, 21, 22, 25, 26]], inplace=True, errors='ignore') | |
for col_name in [x for x in test_df.columns if 'sensor_' in x]: | |
test_df[col_name] = MIN_MAX_SCALERS[col_name].transform(test_df[col_name].values.reshape(-1, 1)).squeeze() | |
X_test = test_df.groupby('unit_number').apply(lambda group_df: group_df.iloc[group_df['time'].argmax()])[[x for x in test_df.columns if 'sensor_' in x]].values | |
y_test = pd.read_csv('/content/drive/MyDrive/Datasets/NASA_CMAPSS/RUL_FD001.txt', header=None).values.squeeze().clip(max=125) | |
def print_train_test_results(X_train, X_test, y_train, y_test, model): | |
y_pred_train = model.predict(X_train) | |
y_pred_test = model.predict(X_test) | |
print(f'RMSE on train set: {mean_squared_error(y_train, y_pred_train, squared=False)}') | |
print(f'RMSE on test set: {mean_squared_error(y_test, y_pred_test, squared=False)}') | |
print_train_test_results(X_train, X_test, y_train, y_test, xgbr) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment