Created
September 27, 2021 12:08
-
-
Save erap129/c0d1a65fc2dfde7824e773f6128c3357 to your computer and use it in GitHub Desktop.
NASA RUL project - automatic feature generation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| all_rollings_df_X = all_rollings_df.drop(columns=['RUL']) | |
| extracted_features = extract_features(all_rollings_df_X, | |
| column_id="instance_id", column_sort="time", | |
| n_jobs=4, default_fc_parameters=tsfresh.feature_extraction.settings.MinimalFCParameters()) | |
| impute(extracted_features) | |
| features_filtered = select_features(extracted_features, y_train_rolling, n_jobs=4) | |
| def get_last_window_from_unit(group_df): | |
| res_df = group_df[[x for x in test_df.columns if 'sensor_' in x]].iloc[-10:] | |
| res_df['time'] = np.arange(1, len(res_df) + 1) | |
| return res_df | |
| test_df_X = test_df.sort_values(['unit_number', 'time']).groupby('unit_number').\ | |
| apply(get_last_window_from_unit).reset_index().drop(columns=['level_1']) | |
| extracted_features_test = extract_features(test_df_X, column_id="unit_number", column_sort="time", | |
| n_jobs=4, default_fc_parameters=tsfresh.feature_extraction.settings.MinimalFCParameters()) | |
| extracted_features_test_min = extracted_features_test[features_filtered.columns] | |
| xgbr_features_automatic = XGBRegressor() | |
| xgbr_features_automatic.fit(features_filtered.values, y_train_rolling) | |
| print_train_test_results(features_filtered.values, | |
| extracted_features_test_min.values, | |
| y_train_rolling, y_test, xgbr_features_automatic) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment