Created
February 19, 2022 12:23
-
-
Save erap129/d2a2dae52a6a1e1cc578f8e40295dd91 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from surprise import AlgoBase, KNNBasic | |
from surprise.prediction_algorithms.knns import SymmetricAlgo | |
class CustomSimKNNAlgorithm(KNNBasic): | |
def __init__(self, sim_options, k=40, min_k=1): | |
SymmetricAlgo.__init__(self) | |
self.sim_options = sim_options | |
self.k = k | |
self.min_k = min_k | |
def fit(self, trainset, similarities): | |
AlgoBase.fit(self, trainset) | |
self.sim = similarities | |
ub = self.sim_options['user_based'] | |
self.n_x = self.trainset.n_users if ub else self.trainset.n_items | |
self.n_y = self.trainset.n_items if ub else self.trainset.n_users | |
self.xr = self.trainset.ur if ub else self.trainset.ir | |
self.yr = self.trainset.ir if ub else self.trainset.ur | |
def test(self, testset, verbose=False): | |
# The ratings are translated back to their original scale. | |
predictions = [self.predict(uid, | |
iid, | |
r_ui_trans, | |
verbose=verbose) | |
for (uid, iid, r_ui_trans) in tqdm(testset, desc='making predictions')] | |
return predictions |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment