Last active
May 5, 2022 18:56
-
-
Save erap129/d772b9a90f5fb7e73c7a83f4ba47ad41 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
constant_filter = VarianceThreshold(threshold = 0.0002) | |
constant_filter.fit(tfidf_df) | |
feature_list = tfidf_df.columns[constant_filter.get_support(indices=True)] | |
print('Number of selected features: ' ,len(list(feature_list)),'\n') | |
print('List of selected features: \n' ,list(feature_list)) | |
item_matrix_filtered_words_trainset_loocv = get_item_matrix_with_inner_ids(tfidf_df[feature_list].values, movies_df, train_loocv) | |
cosine_sim_filtered_words_trainset_loocv = cosine_similarity(item_matrix_filtered_words_trainset_loocv, | |
item_matrix_filtered_words_trainset_loocv) | |
item_matrix_filtered_words_trainset = get_item_matrix_with_inner_ids(tfidf_df[feature_list].values, movies_df, trainset) | |
cosine_sim_filtered_words_trainset = cosine_similarity(item_matrix_all_words_trainset, item_matrix_all_words_trainset) | |
get_algorithm_report(CustomSimKNNAlgorithm, trainset, testset, train_loocv, test_loocv, movies_df, | |
target_movie_id='movie_1', target_user_id='user_1', top_k=10, | |
algo_kwargs_trainset=dict(similarities=cosine_sim_filtered_words_trainset, sim_options={'user_based': False}), | |
algo_kwargs_trainset_loocv=dict(similarities=cosine_sim_filtered_words_trainset_loocv, sim_options={'user_based': False})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment