Last active
May 6, 2022 07:26
-
-
Save erap129/d80f30af38fa303ae79cfaa6ee3ce6fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
nltk.download('punkt') | |
text = ' '.join(list(feature_list)) | |
st = StanfordNERTagger(f'{BASE_FOLDER}/MovieLens-1M/english.all.3class.distsim.crf.ser.gz', | |
f'{BASE_FOLDER}/MovieLens-1M/stanford-ner.jar') | |
people = [] | |
for sent in nltk.sent_tokenize(text): | |
tokens = nltk.tokenize.word_tokenize(sent) | |
tags = st.tag(tokens) | |
for tag in tags: | |
if tag[1] == "PERSON": | |
people.append(tag[0]) | |
tfidf_df_min = tfidf_df[[x for x in list(feature_list) if x not in people]] | |
item_matrix_filtered_words_no_names_trainset_loocv = get_item_matrix_with_inner_ids(tfidf_df_min.values, movies_df, train_loocv) | |
cosine_sim_filtered_words_no_names_trainset_loocv = cosine_similarity(item_matrix_filtered_words_no_names_trainset_loocv, | |
item_matrix_filtered_words_no_names_trainset_loocv) | |
item_matrix_filtered_words_no_names_trainset = get_item_matrix_with_inner_ids(tfidf_df_min.values, movies_df, trainset) | |
cosine_sim_filtered_words_no_names_trainset = cosine_similarity(item_matrix_filtered_words_no_names_trainset, item_matrix_filtered_words_no_names_trainset) | |
get_algorithm_report(CustomSimKNNAlgorithm, trainset, testset, train_loocv, test_loocv, movies_df, | |
target_movie_id='movie_1', target_user_id='user_1', top_k=10, | |
algo_kwargs_trainset=dict(similarities=cosine_sim_filtered_words_no_names_trainset, sim_options={'user_based': False}), | |
algo_kwargs_trainset_loocv=dict(similarities=cosine_sim_filtered_words_no_names_trainset_loocv, sim_options={'user_based': False})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment