Created
September 27, 2021 12:11
-
-
Save erap129/eefce5ea41560a3ccf48760891a45401 to your computer and use it in GitHub Desktop.
NASA RUL project - manual feature generation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def avg_diff(series): | |
| return np.mean(np.diff(series)) | |
| all_rollings_grouped = all_rollings_df_X.drop(columns=['time']).groupby('instance_id').agg(['mean', avg_diff, 'std', 'max', 'min']) | |
| test_df_grouped = test_df.sort_values(['unit_number', 'time']).groupby('unit_number').\ | |
| apply(lambda group_df: group_df[[x for x in test_df.columns if 'sensor_' in x]].\ | |
| iloc[-WINDOW_SIZE:]).reset_index() | |
| test_df_aggregated = test_df_grouped.drop(columns=['level_1']).groupby('unit_number').agg(['mean', avg_diff, 'std', 'max', 'min']) | |
| X_features_manual_train = all_rollings_grouped.values | |
| X_features_manual_test = test_df_aggregated.values | |
| xgbr_features_manual = XGBRegressor() | |
| xgbr_features_manual.fit(X_features_manual_train, y_train_rolling) | |
| print_train_test_results(X_features_manual_train, X_features_manual_test, | |
| y_train_rolling, y_test, xgbr_features_manual) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment