Skip to content

Instantly share code, notes, and snippets.

@erap129
Created September 27, 2021 12:11
Show Gist options
  • Select an option

  • Save erap129/eefce5ea41560a3ccf48760891a45401 to your computer and use it in GitHub Desktop.

Select an option

Save erap129/eefce5ea41560a3ccf48760891a45401 to your computer and use it in GitHub Desktop.
NASA RUL project - manual feature generation
def avg_diff(series):
return np.mean(np.diff(series))
all_rollings_grouped = all_rollings_df_X.drop(columns=['time']).groupby('instance_id').agg(['mean', avg_diff, 'std', 'max', 'min'])
test_df_grouped = test_df.sort_values(['unit_number', 'time']).groupby('unit_number').\
apply(lambda group_df: group_df[[x for x in test_df.columns if 'sensor_' in x]].\
iloc[-WINDOW_SIZE:]).reset_index()
test_df_aggregated = test_df_grouped.drop(columns=['level_1']).groupby('unit_number').agg(['mean', avg_diff, 'std', 'max', 'min'])
X_features_manual_train = all_rollings_grouped.values
X_features_manual_test = test_df_aggregated.values
xgbr_features_manual = XGBRegressor()
xgbr_features_manual.fit(X_features_manual_train, y_train_rolling)
print_train_test_results(X_features_manual_train, X_features_manual_test,
y_train_rolling, y_test, xgbr_features_manual)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment