Last active
November 22, 2016 15:22
-
-
Save ericnovik/57f4fda0492336f1ea0bde8cfc0a1b37 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data <- list(N = 5, y = c(0, 1, 1, 0, 1)) | |
# log probability function | |
# Note: the below operations are not arithmetically | |
# stable. Use for demo purposed only. | |
lp <- function(theta, d) { | |
lp <- 0 | |
for (i in 1:d$N) { | |
lp <- lp + log(theta) * d$y[i] + | |
log(1 - theta) * (1 - d$y[i]) | |
} | |
return(lp) | |
} | |
lp_dbinom <- function(theta, d) { | |
lp <- 0 | |
for (i in 1:length(theta)) { | |
lp[i] <- sum(dbinom(d$y, | |
size = 1, | |
prob = theta[i], | |
log = TRUE)) | |
} | |
return(lp) | |
} | |
lp(c(0.6, 0.7), data) | |
lp_dbinom(c(0.6, 0.7), data) | |
library(ggplot2) | |
n <- 250 | |
theta <- seq(0.001, 0.999, length.out = n) | |
likelihood <- lp(theta = theta, data) | |
prior <- log(dbeta(theta, 1, 1)) | |
log_posterior <- likelihood + prior | |
posterior <- exp(log_posterior) | |
posterior <- posterior / sum(posterior) | |
post_draws <- sample(theta, | |
size = 1e5, | |
replace = TRUE, | |
prob = posterior) | |
post_density <- density(post_samples) | |
mle <- sum(data$y) / data$N | |
mle | |
d <- data.frame(x = post_density$x, y = post_density$y) | |
p <- ggplot(d, aes(x, y)) | |
p <- p + geom_line(size = 5, alpha = 1/7) + | |
geom_vline(xintercept = mle, colour = "red") + theme_bw() + | |
xlab(expression(theta)) + ylab("") | |
p | |
# conjugate posterior | |
theta_conj <- dbeta(theta, 1 + 3, 1 + 5 - 3) | |
d <- data.frame(x = theta, y = theta_conj) | |
p + geom_line(data = d, aes(x, y)) + theme_bw() | |
p | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment