Created
June 18, 2019 13:28
-
-
Save ericpgreen/1a5403efd59b9494712471a950319e37 to your computer and use it in GitHub Desktop.
time series
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # @ericpgreen | |
| # CausalImpact | |
| library(CausalImpact) | |
| set.seed(1) | |
| x1 <- 24 + arima.sim(model = list(ar = 0.999), n = 24) | |
| y <- 1.2 * x1 + rnorm(24) | |
| y[13:24] <- y[13:24] + 10 | |
| data <- cbind(y, x1) | |
| matplot(data, type = "l") | |
| pre.period <- c(1, 12) | |
| post.period <- c(13, 24) | |
| impact <- CausalImpact(data, pre.period, post.period) | |
| plot(impact) | |
| time.points <- seq.Date(as.Date("2018-01-01"), by = "month", length.out = 24) | |
| data <- zoo(cbind(y, x1), time.points) | |
| head(data) | |
| summary(impact) | |
| # Posterior inference {CausalImpact} | |
| # | |
| # Average Cumulative | |
| # Actual 22 268 | |
| # Prediction (s.d.) 12 (0.35) 143 (4.17) | |
| # 95% CI [11, 13] [134, 151] | |
| # | |
| # Absolute effect (s.d.) 10 (0.35) 126 (4.17) | |
| # 95% CI [9.8, 11] [117.4, 134] | |
| # | |
| # Relative effect (s.d.) 88% (2.9%) 88% (2.9%) | |
| # 95% CI [82%, 94%] [82%, 94%] | |
| # | |
| # Posterior tail-area probability p: 0.001 | |
| # Posterior prob. of a causal effect: 99.8999% | |
| # | |
| # For more details, type: summary(impact, "report") | |
| impact$summary | |
| # Actual Pred Pred.lower Pred.upper Pred.sd AbsEffect | |
| # Average 22.34431 11.87668 11.17645 12.56069 0.3474998 10.46763 | |
| # Cumulative 268.13172 142.52016 134.11738 150.72834 4.1699972 125.61156 | |
| # its.analysis | |
| library(its.analysis) | |
| library(tidyverse) | |
| data2 <- as.data.frame(data) | |
| data2 <- tibble::rownames_to_column(data2, "time") | |
| data2$int <- c(rep(0, 12), rep(1, 12)) | |
| itsa.model(data=data2, time="time", depvar="y", interrupt_var = "int", | |
| covariates = "x1", alpha=0.05, bootstrap=TRUE, Reps = 250) | |
| # $group.means | |
| # interrupt_var count mean s.d. | |
| # 1 0 12 11.68917 1.848760 | |
| # 2 1 12 22.34431 2.666517 | |
| # is it true that we compare results as: | |
| # CausalImpact / its.analysis | |
| # 0 11.88 / 11.69 | |
| # 1 22.34 / 22.34 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment