Created
April 27, 2016 02:10
-
-
Save erikbern/a31f9bf7ea896b5d5c286ad13155e8c1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import urllib2, csv | |
import matplotlib.pyplot as plt | |
import datetime | |
import seaborn | |
import numpy, scipy.stats, math | |
f = urllib2.urlopen('https://raw.githubusercontent.com/datasets/s-and-p-500/master/data/data.csv') | |
csv = csv.reader(f) | |
csv.next() # headers | |
dates = [] | |
reinvested = [] | |
last = None | |
total = 1.0 | |
for line in csv: | |
date, value, dividends = line[:3] | |
if date == '2016-04-01': | |
break | |
date = datetime.date(*map(int, date.split('-'))) | |
value = float(value) | |
dividends = float(dividends) | |
if last is not None: | |
sp_yield = value / last | |
dv_yield = dividends / last / 12 | |
total *= (sp_yield + dv_yield) | |
last = value | |
reinvested.append(total) | |
dates.append(date) | |
plt.plot(dates, reinvested) | |
plt.yscale('log') | |
plt.title('S&P 500 total return') | |
plt.ylabel('Index (1870: 1.0)') | |
plt.savefig('sp500_return.png') | |
lump_returns = [] | |
dcav_returns = [] | |
n_years = 5 | |
interval = 12*n_years | |
for offset in xrange(len(reinvested)-interval): | |
streams_lump = [-1.0] + [0.0] * (interval-1) + [reinvested[offset + interval] / reinvested[offset]] | |
streams_dcav = [-1.0] * interval + [sum([reinvested[offset + interval] / r for r in reinvested[offset : offset + interval]])] | |
lump_returns.append(numpy.irr(streams_lump) * 12 * 100) | |
dcav_returns.append(numpy.irr(streams_dcav) * 12 * 100) | |
lump_gain = [int(l > 0) for l in lump_returns] | |
dcav_gain = [int(l > 0) for l in dcav_returns] | |
print sum(lump_gain) / len(lump_gain) | |
print sum(dcav_gain) / len(dcav_gain) | |
print(scipy.stats.ttest_ind(lump_gain, dcav_gain)) | |
plt.clf() | |
amin, amax = (int(math.floor(f((lump_returns, dcav_returns)))) for f in (numpy.amin, numpy.amax)) | |
bins = range(amin, amax, 2) | |
seaborn.distplot(lump_returns, label='Lump investment returns (mean=%.2f%%)' % numpy.mean(lump_returns), bins=bins) | |
seaborn.distplot(dcav_returns, label='Dollar cost averaging returns (mean=%.2f%%)' % numpy.mean(dcav_returns), bins=bins) | |
s, p = scipy.stats.wilcoxon(lump_returns, dcav_returns) | |
plt.title('Lump vs dollar cost returns for a %d year horizon (p=%f)' % (n_years, p)) | |
plt.legend(loc=2) | |
plt.ylabel('Probability') | |
plt.xlabel('Annual return over %d years (%%)' % n_years) | |
plt.savefig('lump_vs_dcav.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment