Created
January 12, 2014 01:29
-
-
Save es/8379407 to your computer and use it in GitHub Desktop.
A BayesClassifier written by following the tutorial written by Burak Kanber. http://burakkanber.com/blog/machine-learning-naive-bayes-1/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"use strict"; | |
var BayesClassifier = function () { | |
this.labels = {}; | |
this.words = {}; | |
this.docNum = 0; | |
this.tokenize = function (doc) { | |
var temp = doc.toLowerCase().replace('.','') | |
.replace(',','') | |
.replace('\'','') | |
.replace('!','') | |
.replace('?','') | |
.replace(':','') | |
.replace(';','') | |
.split(' '); | |
for (var i = 0; i < temp.length; i++) { | |
for (var x = temp.length - 1; x > i; x--) { | |
if (temp[i] === temp[x]) | |
temp.splice(x, 1); | |
} | |
} | |
return temp; | |
}; | |
}; | |
BayesClassifier.prototype.train = function(label, doc) { | |
this.labels[label] = this.labels[label] || {words: {}}; | |
this.labels[label].docNum = this.labels[label].docNum + 1 || 1; | |
this.docNum++; | |
var arr = this.tokenize(doc); | |
for (var i in arr) { | |
this.labels[label].words[arr[i]] | |
if (this.labels[label].words[arr[i]]) | |
this.labels[label].words[arr[i]]++; | |
else | |
this.labels[label].words[arr[i]] = 1; | |
if (this.words[arr[i]]) | |
this.words[arr[i]]++; | |
else | |
this.words[arr[i]] = 1; | |
} | |
}; | |
BayesClassifier.prototype.classify = function(doc) { | |
var wordsArr = this.tokenize(doc); | |
var logSum = 0; | |
var probLabel = {}; | |
for (var currentLabel in this.labels) { | |
var label = this.labels[currentLabel]; | |
for (var i = wordsArr.length - 1; i >= 0; i--) { | |
var wordOccurences = label.words[wordsArr[i]]; | |
if (!wordOccurences) | |
continue; | |
else { | |
var pWordOccurInLabelDoc = wordOccurences / label.docNum; | |
var pWordOccurInNonLabelDoc = (this.words[wordsArr[i]] - wordOccurences) / (this.docNum - label.docNum); | |
var pDocIsLabelGivenWord = pWordOccurInLabelDoc / (pWordOccurInLabelDoc + pWordOccurInNonLabelDoc); | |
logSum += Math.log(pDocIsLabelGivenWord) - Math.log(1 - pDocIsLabelGivenWord + pDocIsLabelGivenWord); | |
} | |
} | |
probLabel[currentLabel] = Math.exp(logSum); | |
} | |
return probLabel; | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment