Skip to content

Instantly share code, notes, and snippets.

@esenthil2018
Created May 28, 2022 03:24
Show Gist options
  • Save esenthil2018/0f63bd469c6214dbad2bc043afb70d43 to your computer and use it in GitHub Desktop.
Save esenthil2018/0f63bd469c6214dbad2bc043afb70d43 to your computer and use it in GitHub Desktop.
#The below is the code generated by get_code() method.
import pickle
import lineapy
import tensorflow as tf
from lineapy.utils.utils import prettify
from tensorflow import keras
from tensorflow.keras import layers
normalizer = tf.keras.layers.Normalization(axis=-1)
train_features1 = pickle.load(open("/root/.lineapy/linea_pickles/yzU2NLl", "rb"))
train_labels1 = pickle.load(open("/root/.lineapy/linea_pickles/GPSupKi", "rb"))
def build_and_compile_model(norm):
model = keras.Sequential(
[
norm,
layers.Dense(64, activation="relu"),
layers.Dense(64, activation="relu"),
layers.Dense(1),
]
)
model.compile(loss="mean_absolute_error", optimizer=tf.keras.optimizers.Adam(0.001))
return model
dnn_model = build_and_compile_model(normalizer)
history = dnn_model.fit(
train_features1, train_labels1, validation_split=0.2, verbose=0, epochs=100
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment