Created
May 28, 2022 03:47
-
-
Save esenthil2018/9d045b0e10a49cc6347a2825eb3def6c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#DNN Model | |
def build_and_compile_model(norm): | |
model = keras.Sequential([ | |
norm, | |
layers.Dense(64, activation='relu'), | |
layers.Dense(64, activation='relu'), | |
layers.Dense(1) | |
]) | |
model.compile(loss='mean_absolute_error', | |
optimizer=tf.keras.optimizers.Adam(0.001)) | |
return model | |
dnn_model = build_and_compile_model(normalizer) | |
dnn_model.summary() | |
history = dnn_model.fit( | |
train_features1, | |
train_labels1, | |
validation_split=0.2, | |
verbose=0, epochs=100) | |
def plot_loss(history): | |
plt.plot(history.history['loss'], label='loss') | |
plt.plot(history.history['val_loss'], label='val_loss') | |
plt.ylim([0, 10]) | |
plt.xlabel('Epoch') | |
plt.ylabel('Error [MPG]') | |
plt.legend() | |
plt.grid(True) | |
plot_loss(history) | |
test_results['dnn_model'] = dnn_model.evaluate(test_features1, test_labels1, verbose=0) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment