Last active
September 23, 2024 04:29
-
-
Save esjewett/db2233480b4cd5a15c0bf1cd15ec5f99 to your computer and use it in GitHub Desktop.
Generating a visualization of migration of those under 40, by age, state, and whether or not they have a college degree (as opposed to less or more education) - Data citation: IPUMS-USA, University of Minnesota, www.ipums.org.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
df_full <- read.csv("~/git_repos/mig_analysis/usa_00006.csv", header=T) | |
# At what age to people migrate to/from each state? | |
age_state_of_migrate_to <- filter(df_full, MIGPLAC1 != 0 & MIGPLAC1 <= 56) %>% | |
mutate(edu = EDUCD == 101) %>% | |
group_by(AGE, STATEFIP, edu) %>% | |
summarise(to_count = n()) | |
age_state_of_migrate_from <- filter(df_full, MIGPLAC1 != 0 & MIGPLAC1 <= 56) %>% | |
mutate(edu = EDUCD == 101) %>% | |
group_by(AGE, MIGPLAC1, edu) %>% | |
summarise(from_count = n()) %>% | |
rename(STATEFIP = MIGPLAC1) | |
age_state_total_migrate <- filter(df_full) %>% | |
group_by(AGE, STATEFIP) %>% | |
summarise(total_count = n()) | |
age_state_of_migrate <- filter(df_full) %>% | |
mutate(edu = EDUCD == 101) %>% | |
group_by(AGE, STATEFIP, edu) %>% | |
summarise(count = n()) %>% | |
left_join(age_state_total_migrate) %>% | |
left_join(age_state_of_migrate_to) %>% | |
left_join(age_state_of_migrate_from) %>% | |
filter(AGE!=0) %>% | |
rename(fips = STATEFIP) %>% | |
left_join(fips_lookup) %>% | |
mutate( | |
new_abb = as.character(abb) | |
) %>% | |
complete(fips, AGE, edu, fill = list(to_count = 0, from_count = 0, total_count = 0)) %>% | |
arrange(fips, AGE, edu) | |
ggplot(data=age_state_of_migrate, aes(fill=edu)) + | |
geom_bar(stat="sum", aes(x=AGE, y=to_count/total_count), position = "stack") + | |
geom_bar(stat="sum", aes(x=AGE, y=-from_count/total_count), position = "stack") + | |
xlab("Age") + | |
ylab("Migration rate to/from") + | |
scale_fill_discrete("Education", | |
labels=c("Lower or higher\nthan college degree\n(EDUCD<>101)", "College Degree")) + | |
facet_wrap(~new_abb) + | |
guides(size = F) | |
ggplot(data=age_state_of_migrate, aes(fill=edu)) + | |
geom_bar(stat="sum", aes(x=AGE, y=(to_count-from_count)/total_count), position = "stack") + | |
xlab("Age") + | |
ylab("Net migration rate") + | |
scale_fill_discrete("Education", | |
labels=c("Lower or higher\nthan college degree\n(EDUCD<>101)", "College Degree")) + | |
facet_wrap(~new_abb) + | |
guides(size = F) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Description: Revision of (Revision of (Revision of (Revision of (Recreating Upshot analysis here: http://www.nytimes.com/2016/11/22/upshot/the-states-that-college-graduates-are-most-likely-to-leave.html?smid=tw-upshotnyt&smtyp=cur)))) | |
Samples selected: | |
2000 ACS | |
Note: | |
Density of the full data file: 0.13% | |
Density of your extract: 0.13% | |
2001 ACS | |
Note: | |
Density of the full data file: 0.43% | |
Density of your extract: 0.43% | |
2002 ACS | |
Note: | |
Density of the full data file: 0.38% | |
Density of your extract: 0.38% | |
2003 ACS | |
Note: | |
Density of the full data file: 0.42% | |
Density of your extract: 0.42% | |
2004 ACS | |
Note: | |
Density of the full data file: 0.42% | |
Density of your extract: 0.42% | |
2005 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2006 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2007 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2008 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2009 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2010 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2011 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2012 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2013 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2014 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
2015 ACS | |
Note: | |
Density of the full data file: 1.0% | |
Density of your extract: 1.0% | |
File Type: rectangular | |
Case Selection: Yes | |
Variable Columns Len 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 | |
YEAR H 1-4 4 X X X X X X X X X X X X X X X X | |
STATEFIP H 5-6 2 X X X X X X X X X X X X X X X X | |
AGE P 7-9 3 X X X X X X X X X X X X X X X X | |
EDUC P 10-11 2 X X X X X X X X X X X X X X X X | |
EDUCD P 12-14 3 X X X X X X X X X X X X X X X X | |
MIGPLAC1 P 15-17 3 X X X X X X X X X X X X X X X X | |
Variable Availability Key: | |
All Years X - available in this sample | |
All Years . - not available in this sample | |
Case Selections: | |
P AGE 000 Less than 1 year old | |
P AGE 001 1 | |
P AGE 002 2 | |
P AGE 003 3 | |
P AGE 004 4 | |
P AGE 005 5 | |
P AGE 006 6 | |
P AGE 007 7 | |
P AGE 008 8 | |
P AGE 009 9 | |
P AGE 010 10 | |
P AGE 011 11 | |
P AGE 012 12 | |
P AGE 013 13 | |
P AGE 014 14 | |
P AGE 015 15 | |
P AGE 016 16 | |
P AGE 017 17 | |
P AGE 018 18 | |
P AGE 019 19 | |
P AGE 020 20 | |
P AGE 021 21 | |
P AGE 022 22 | |
P AGE 023 23 | |
P AGE 024 24 | |
P AGE 025 25 | |
P AGE 026 26 | |
P AGE 027 27 | |
P AGE 028 28 | |
P AGE 029 29 | |
P AGE 030 30 | |
P AGE 031 31 | |
P AGE 032 32 | |
P AGE 033 33 | |
P AGE 034 34 | |
P AGE 035 35 | |
P AGE 036 36 | |
P AGE 037 37 | |
P AGE 038 38 | |
P AGE 039 39 | |
P AGE 040 40 | |
YEAR Census year | |
1850 1850 | |
1860 1860 | |
1870 1870 | |
1880 1880 | |
1900 1900 | |
1910 1910 | |
1920 1920 | |
1930 1930 | |
1940 1940 | |
1950 1950 | |
1960 1960 | |
1970 1970 | |
1980 1980 | |
1990 1990 | |
2000 2000 | |
2001 2001 | |
2002 2002 | |
2003 2003 | |
2004 2004 | |
2005 2005 | |
2006 2006 | |
2007 2007 | |
2008 2008 | |
2009 2009 | |
2010 2010 | |
2011 2011 | |
2012 2012 | |
2013 2013 | |
2014 2014 | |
2015 2015 | |
STATEFIP State (FIPS code) | |
01 Alabama | |
02 Alaska | |
04 Arizona | |
05 Arkansas | |
06 California | |
08 Colorado | |
09 Connecticut | |
10 Delaware | |
11 District of Columbia | |
12 Florida | |
13 Georgia | |
15 Hawaii | |
16 Idaho | |
17 Illinois | |
18 Indiana | |
19 Iowa | |
20 Kansas | |
21 Kentucky | |
22 Louisiana | |
23 Maine | |
24 Maryland | |
25 Massachusetts | |
26 Michigan | |
27 Minnesota | |
28 Mississippi | |
29 Missouri | |
30 Montana | |
31 Nebraska | |
32 Nevada | |
33 New Hampshire | |
34 New Jersey | |
35 New Mexico | |
36 New York | |
37 North Carolina | |
38 North Dakota | |
39 Ohio | |
40 Oklahoma | |
41 Oregon | |
42 Pennsylvania | |
44 Rhode Island | |
45 South Carolina | |
46 South Dakota | |
47 Tennessee | |
48 Texas | |
49 Utah | |
50 Vermont | |
51 Virginia | |
53 Washington | |
54 West Virginia | |
55 Wisconsin | |
56 Wyoming | |
State groups (1980 Urban/rural sample): | |
61 Maine-New Hampshire-Vermont | |
62 Massachusetts-Rhode Island | |
63 Minnesota-Iowa-Missouri-Kansas-Nebraska-S.Dakota-N.Dakota | |
64 Maryland-Delaware | |
65 Montana-Idaho-Wyoming | |
66 Utah-Nevada | |
67 Arizona-New Mexico | |
68 Alaska-Hawaii | |
72 Puerto Rico | |
97 Military/Mil. Reservation | |
99 State not identified | |
AGE Age | |
000 Less than 1 year old | |
001 1 | |
002 2 | |
003 3 | |
004 4 | |
005 5 | |
006 6 | |
007 7 | |
008 8 | |
009 9 | |
010 10 | |
011 11 | |
012 12 | |
013 13 | |
014 14 | |
015 15 | |
016 16 | |
017 17 | |
018 18 | |
019 19 | |
020 20 | |
021 21 | |
022 22 | |
023 23 | |
024 24 | |
025 25 | |
026 26 | |
027 27 | |
028 28 | |
029 29 | |
030 30 | |
031 31 | |
032 32 | |
033 33 | |
034 34 | |
035 35 | |
036 36 | |
037 37 | |
038 38 | |
039 39 | |
040 40 | |
041 41 | |
042 42 | |
043 43 | |
044 44 | |
045 45 | |
046 46 | |
047 47 | |
048 48 | |
049 49 | |
050 50 | |
051 51 | |
052 52 | |
053 53 | |
054 54 | |
055 55 | |
056 56 | |
057 57 | |
058 58 | |
059 59 | |
060 60 | |
061 61 | |
062 62 | |
063 63 | |
064 64 | |
065 65 | |
066 66 | |
067 67 | |
068 68 | |
069 69 | |
070 70 | |
071 71 | |
072 72 | |
073 73 | |
074 74 | |
075 75 | |
076 76 | |
077 77 | |
078 78 | |
079 79 | |
080 80 | |
081 81 | |
082 82 | |
083 83 | |
084 84 | |
085 85 | |
086 86 | |
087 87 | |
088 88 | |
089 89 | |
090 90 (90+ in 1980 and 1990) | |
091 91 | |
092 92 | |
093 93 | |
094 94 | |
095 95 | |
096 96 | |
097 97 | |
098 98 | |
099 99 | |
100 100 (100+ in 1960-1970) | |
101 101 | |
102 102 | |
103 103 | |
104 104 | |
105 105 | |
106 106 | |
107 107 | |
108 108 | |
109 109 | |
110 110 | |
111 111 | |
112 112 (112+ in the 1980 internal data) | |
113 113 | |
114 114 | |
115 115 (115+ in the 1990 internal data) | |
116 116 | |
117 117 | |
118 118 | |
119 119 | |
120 120 | |
121 121 | |
122 122 | |
123 123 | |
124 124 | |
125 125 | |
126 126 | |
129 129 | |
130 130 | |
135 135 | |
EDUC Educational attainment [general version] | |
00 N/A or no schooling | |
01 Nursery school to grade 4 | |
02 Grade 5, 6, 7, or 8 | |
03 Grade 9 | |
04 Grade 10 | |
05 Grade 11 | |
06 Grade 12 | |
07 1 year of college | |
08 2 years of college | |
09 3 years of college | |
10 4 years of college | |
11 5+ years of college | |
EDUCD Educational attainment [detailed version] | |
000 N/A or no schooling | |
001 N/A | |
002 No schooling completed | |
010 Nursery school to grade 4 | |
011 Nursery school, preschool | |
012 Kindergarten | |
013 Grade 1, 2, 3, or 4 | |
014 Grade 1 | |
015 Grade 2 | |
016 Grade 3 | |
017 Grade 4 | |
020 Grade 5, 6, 7, or 8 | |
021 Grade 5 or 6 | |
022 Grade 5 | |
023 Grade 6 | |
024 Grade 7 or 8 | |
025 Grade 7 | |
026 Grade 8 | |
030 Grade 9 | |
040 Grade 10 | |
050 Grade 11 | |
060 Grade 12 | |
061 12th grade, no diploma | |
062 High school graduate or GED | |
063 Regular high school diploma | |
064 GED or alternative credential | |
065 Some college, but less than 1 year | |
070 1 year of college | |
071 1 or more years of college credit, no degree | |
080 2 years of college | |
081 Associate's degree, type not specified | |
082 Associate's degree, occupational program | |
083 Associate's degree, academic program | |
090 3 years of college | |
100 4 years of college | |
101 Bachelor's degree | |
110 5+ years of college | |
111 6 years of college (6+ in 1960-1970) | |
112 7 years of college | |
113 8+ years of college | |
114 Master's degree | |
115 Professional degree beyond a bachelor's degree | |
116 Doctoral degree | |
999 Missing | |
MIGPLAC1 State or country of residence 1 year ago | |
000 N/A | |
001 Alabama | |
002 Alaska | |
004 Arizona | |
005 Arkansas | |
006 California | |
008 Colorado | |
009 Connecticut | |
010 Delaware | |
011 District of Columbia | |
012 Florida | |
013 Georgia | |
015 Hawaii | |
016 Idaho | |
017 Illinois | |
018 Indiana | |
019 Iowa | |
020 Kansas | |
021 Kentucky | |
022 Louisiana | |
023 Maine | |
024 Maryland | |
025 Massachusetts | |
026 Michigan | |
027 Minnesota | |
028 Mississippi | |
029 Missouri | |
030 Montana | |
031 Nebraska | |
032 Nevada | |
033 New Hampshire | |
034 New Jersey | |
035 New Mexico | |
036 New York | |
037 North Carolina | |
038 North Dakota | |
039 Ohio | |
040 Oklahoma | |
041 Oregon | |
042 Pennsylvania | |
044 Rhode Island | |
045 South Carolina | |
046 South Dakota | |
047 Tennessee | |
048 Texas | |
049 Utah | |
050 Vermont | |
051 Virginia | |
053 Washington | |
054 West Virginia | |
055 Wisconsin | |
056 Wyoming | |
099 United States, ns | |
100 Samoa, 1950 | |
105 Guam | |
110 Puerto Rico | |
115 Virgin Islands | |
120 Other US Possessions | |
150 Canada | |
151 English Canada | |
152 French Canada | |
160 Atlantic Islands | |
200 Mexico | |
211 Belize/British Honduras | |
212 Costa Rica | |
213 El Salvador | |
214 Guatemala | |
215 Honduras | |
216 Nicaragua | |
217 Panama | |
218 Canal Zone | |
219 Central America, nec | |
250 Cuba | |
261 Dominican Republic | |
262 Haita | |
263 Jamaica | |
264 British West Indies | |
267 Other West Indies | |
290 Other Caribbean and North America | |
305 Argentina | |
310 Bolivia | |
315 Brazil | |
320 Chile | |
325 Colombia | |
330 Ecuador | |
345 Paraguay | |
350 Peru | |
360 Uruguay | |
365 Venezuela | |
390 South America, nec | |
400 Denmark | |
401 Finland | |
402 Iceland | |
404 Norway | |
405 Sweden | |
410 England | |
411 Scotland | |
412 Wales | |
413 United Kingdom (excluding England: 2005ACS) | |
414 Ireland | |
415 Northern Ireland | |
419 Other Northern Europe | |
420 Belgium | |
421 France | |
422 Luxembourg | |
425 Netherlands | |
426 Switzerland | |
429 Other Western Europe | |
430 Albania | |
433 Greece | |
434 Dodecanese Islands | |
435 Italy | |
436 Portugal | |
437 Azores | |
438 Spain | |
450 Austria | |
451 Bulgaria | |
452 Czechoslovakia | |
453 Germany | |
454 Hungary | |
455 Poland | |
456 Romania | |
457 Yugoslavia | |
458 Bosnia and Herzegovinia | |
459 Other Eastern Europe | |
460 Estonia | |
461 Latvia | |
462 Lithuania | |
463 Other Northern or Eastern Europe | |
465 USSR | |
498 Ukraine | |
499 Europe, ns | |
500 China | |
501 Japan | |
502 Korea | |
503 Taiwan | |
515 Philippines | |
517 Thailand | |
518 Vietnam | |
519 Other South East Asia | |
520 Nepal | |
521 India | |
522 Iran | |
523 Iraq | |
525 Pakistan | |
534 Israel/Palestine | |
535 Jordan | |
537 Lebanon | |
540 Saudi Arabia | |
541 Syria | |
542 Turkey | |
543 Afghanistan | |
551 Other Western Asia | |
599 Asia, nec | |
600 Africa | |
610 Northern Africa | |
611 Egypt | |
619 Nigeria | |
620 Western Africa | |
621 Eastern Africa | |
694 South Africa (Union of) | |
699 Africa, nec | |
701 Australia | |
702 New Zealand | |
710 Pacific Islands (Australia and New Zealand Subregions, not specified, Oceania and at Sea: ACS) | |
900 Abroad (unknown) or at sea | |
997 Unknown value | |
999 Missing |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I visited your site and I like to say that These services offer personalized, well-researched content tailored to specific requirements. By working with professional writers, students gain valuable insights into structuring arguments, presenting ideas logically, and maintaining an academic tone. Beyond simply completing the assignment, using such services can be an educational tool, helping improve writing skills over time Please click here academized.com/write-my-essay it’s crucial to choose reputable providers who emphasize originality and adhere to academic integrity. With the right support, students can manage their workload more effectively while also enhancing their writing proficiency. Just remember, it's a learning aid, not a shortcut to avoid effort.