Skip to content

Instantly share code, notes, and snippets.

@ethen8181
Last active May 18, 2017 14:28
Show Gist options
  • Save ethen8181/08badf77cc417c24244f4b160991ace0 to your computer and use it in GitHub Desktop.
Save ethen8181/08badf77cc417c24244f4b160991ace0 to your computer and use it in GitHub Desktop.
import numpy as np
from lightfm import LightFM
from sklearn.metrics import roc_auc_score
from lightfm.datasets import fetch_movielens
def auc_score(model, ratings):
"""
computes area under the ROC curve (AUC).
The full name should probably be mean
auc score as it is computing the auc
for every user's prediction and actual
interaction and taking the average for
all users
Parameters
----------
model : BPR instance
the trained BPR model
ratings : scipy sparse matrix [n_users, n_items]
sparse matrix of user-item interactions
Returns
-------
auc : float 0 ~ 1
auc score of the model
"""
ratings = ratings.tocsr()
auc = 0.0
n_users, n_items = ratings.shape
for user in range(n_users):
y_pred = model.user_embeddings[user].dot(model.item_embeddings.T) + model.item_biases
y_true = np.zeros(n_items, dtype = np.int32)
y_true[ratings[user].indices] = 1
auc += roc_auc_score(y_true, y_pred)
auc /= n_users
return auc
movielens = fetch_movielens()
train = movielens['train']
test = movielens['test']
model = LightFM(learning_rate=0.05, loss='bpr')
model.fit(train, epochs=10)
auc_score(model, test)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment