Created
November 19, 2024 10:56
-
-
Save eusoubrasileiro/d0629be76c7fac263f092ac2d99ee704 to your computer and use it in GitHub Desktop.
Customized save and load InMemoryDocumentStore `Document`s
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import zlib | |
import numpy as np | |
from pathlib import Path | |
from haystack import Document | |
from haystack.document_stores.in_memory import InMemoryDocumentStore | |
from tqdm import tqdm | |
# Configuration | |
ROOT_PATH = Path("/mnt/shared/ipp/") | |
OUTPUT_DOC_DIR = ROOT_PATH / "haystack/docs" | |
OUTPUT_EMBED_DIR = ROOT_PATH / "haystack/embeddings/" | |
for path in tqdm(list(DOCS_PATH.glob("*.txt"))): | |
embedings_file = OUTPUT_EMBED_DIR / f"{path.stem}.npz" | |
textnmeta_file = OUTPUT_DOC_DIR / f"{path.stem}.meta" | |
# Skip if both files already exist - some names includes '.' so | |
if embedings_file.exists() and textnmeta_file.exists(): | |
continue | |
# Read the document content | |
with path.open("r") as f: | |
text = f.read() | |
doc = Document(content=text, meta={"title": path.name}) | |
# need more metadata from spotify, soundcloud etc. | |
split_docs = document_splitter.run([doc]) # poor split, only by '.' for sentence | |
# need a good cleaning and maybe another splitter? | |
document_embedder.warm_up() # [Document...] now contain embeedings | |
docs = document_embedder.run(split_docs['documents']) # a=input list[Document] | |
# Save embeddings and metadata | |
embeddings = [] | |
metadata = [] | |
for doc in docs['documents']: | |
metadata.append({ | |
"content": doc.content, | |
"meta": doc.meta | |
}) | |
embeddings.append(doc.embedding) | |
np.savez_compressed(embedings_file, embeddings=embeddings) | |
with textnmeta_file.open("wb") as f: | |
compressed_metadata = zlib.compress(json.dumps(metadata).encode("utf-8")) | |
f.write(compressed_metadata) | |
def load_documents_and_embeddings(verbose=False): | |
""" | |
Load metadata and embeddings from disk and recreate documents for the InMemoryDocumentStore. | |
""" | |
# Initialize an empty document store | |
document_store = InMemoryDocumentStore() | |
if verbose: | |
print("Reconstructing the InMemoryDocumentStore...") | |
for textnmeta_file in tqdm(list(OUTPUT_DOC_DIR.glob("*.meta"))): | |
embedings_file = OUTPUT_EMBED_DIR / f"{textnmeta_file.stem}.npz" | |
if not embedings_file.exists(): | |
print(f"Warning: Embeddings file missing for {textnmeta_file}. Skipping...") | |
continue | |
with textnmeta_file.open("rb") as f: # Load metadata | |
compressed_metadata = f.read() | |
metadata = json.loads(zlib.decompress(compressed_metadata).decode("utf-8")) | |
embeddings_data = np.load(embedings_file) # Load embeddings | |
embeddings = embeddings_data["embeddings"] | |
# Ensure the counts match | |
if len(metadata) != len(embeddings): | |
print(f"Error: Metadata and embeddings count mismatch in {textnmeta_file}. Skipping...") | |
continue | |
documents = [] | |
for meta, embedding in zip(metadata, embeddings): | |
documents.append(Document(content=meta["content"], meta=meta["meta"], embedding=embedding)) | |
document_store.write_documents(documents) | |
if verbose: | |
print(f"Reconstruction complete. {len(document_store.storage)} documents loaded into the store.") | |
return document_store |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment