Created
June 8, 2020 04:41
-
-
Save eustin/f4196b65b507f7c635dbbcbf5e50a8a1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
query_input = tf.keras.layers.Input(shape=(1, EMBEDDING_DIMS, ), dtype=tf.float32, name='query') | |
docs_input = tf.keras.layers.Input(shape=(NUM_DOCS_PER_QUERY, EMBEDDING_DIMS, ), dtype=tf.float32, | |
name='docs') | |
expand_batch = ExpandBatchLayer(name='expand_batch') | |
dense_1 = tf.keras.layers.Dense(units=3, activation='linear', name='dense_1') | |
dense_out = tf.keras.layers.Dense(units=1, activation='linear', name='scores') | |
scores_prob_dist = tf.keras.layers.Dense(units=NUM_DOCS_PER_QUERY, activation='softmax', | |
name='scores_prob_dist') | |
expanded_batch = expand_batch([query_input, docs_input]) | |
dense_1_out = dense_1(expanded_batch) | |
scores = tf.keras.layers.Flatten()(dense_out(dense_1_out)) | |
model_out = scores_prob_dist(scores) | |
model = tf.keras.models.Model(inputs=[query_input, docs_input], outputs=[model_out]) | |
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.03, momentum=0.9), | |
loss=tf.keras.losses.KLDivergence()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment