Created
July 16, 2015 15:24
-
-
Save evanbiederstedt/64207101f1cea0ab796a to your computer and use it in GitHub Desktop.
Hogg test, array 3072, mean = 0, var = 1
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
CODE: | |
"""" | |
# | |
# Create an array shaped (3000,), mean = 0.0, variance = 1.0, and compute a_lm values. | |
# use np.random.normal(mean, std, size) | |
# http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html | |
# | |
hoggarray = np.random.normal(0.0, 1.0, 3072) # mean = 0, std = 1 = var = 1 | |
print hoggarray | |
print "array shape is" | |
print hoggarray.shape # array shape | |
print "median is" | |
print np.median(hoggarray) # median | |
print "mean is" | |
print np.mean(hoggarray) #mean | |
print "variance is" | |
print np.var(hoggarray) #variance | |
"""" | |
OUTPUT: | |
[-0.55676395 0.48483198 -0.59881687 ..., 0.8116213 -0.10942984 | |
-0.22426777] | |
array shape is | |
(3072,) | |
median is | |
0.00747173452011 | |
mean is | |
-0.00217478806788 | |
variance is | |
0.986227505318 | |
CODE: | |
"""" | |
hoggalmarr = hp.map2alm(hoggarray) # This is an array of a_lm values | |
print "The array of spherical harmonic coefficients a_lm is" | |
print hoggalmarr | |
print "The arr.shape is " + str(hoggalmarr.shape) | |
print "The length of a_lm array is " + str(len(almarr)) | |
"""" | |
OUTPUT: | |
The array of spherical harmonic coefficients a_lm is | |
[-0.00837408+0.j 0.04134131+0.j 0.06053477+0.j ..., | |
0.02215815-0.01595516j 0.06886747-0.02858377j -0.02954801+0.04785066j] | |
The arr.shape is (1176,) | |
The length of a_lm array is 1176 | |
CODE: | |
"""" | |
# | |
# Create an array with only the values a_3m, i.e. a_30, a_31, a_32, a_33 | |
# | |
# First convert the array of alm coefficients into a real | |
# | |
realalm = hoggalmarr.real | |
# | |
print realalm[:36] | |
"""" | |
OUTPUT: | |
[-0.00837408 0.04134131 0.06053477 -0.0705577 -0.05237246 -0.03644615 | |
0.03338565 -0.04845627 -0.16817491 -0.00438878 0.08074669 0.05330128 | |
0.07296344 0.03266376 0.02259408 0.03067941 -0.00937243 -0.01763272 | |
-0.02879025 0.02725608 -0.04301382 -0.12658109 0.08010855 0.0023713 | |
-0.02216241 -0.03100067 -0.02929653 0.02698051 0.05829383 0.03782057 | |
0.11589424 -0.00777469 -0.17969654 -0.02823551 0.0165002 0.00345596] | |
CODE: | |
"""" | |
empty_almlist = [] | |
# | |
a30 = realalm[3] | |
a31 = realalm[35] | |
a32 = realalm[66] | |
a33 = realalm[96] | |
# | |
print "a30 is " + str(a30) | |
print "a31 is " + str(a31) | |
print "a32 is " + str(a32) | |
print "a33 is " + str(a33) | |
# | |
print str(pairs[3]) # Check with our output above | |
print str(pairs[35]) | |
print str(pairs[66]) | |
print str(pairs[96]) | |
# | |
empty_almlist.append(a30) | |
empty_almlist.append(a31) | |
empty_almlist.append(a32) | |
empty_almlist.append(a33) | |
# | |
print empty_almlist | |
"""" | |
OUTPUT: | |
a30 is -0.0705577002094 | |
a31 is 0.00345595650839 | |
a32 is -0.0167120913546 | |
a33 is 0.0560785204204 | |
(3, 0) | |
(3, 1) | |
(3, 2) | |
(3, 3) | |
[-0.070557700209365054, 0.0034559565083948527, -0.016712091354625973, 0.05607852042035022] | |
CODE: | |
"""" | |
# create array of real-valued alm coefficients, a30 a31 a32 a33 | |
realalm3 = np.asarray(empty_almlist) # np.asarray() converts input into an array | |
print realalm3 | |
# Calculate (abs(alm))**2 i.e. |alm|^2 | |
abs_alm3 = np.absolute(realalm3) | |
print abs_alm3 | |
# Now calculate the squares element-wise, x**2 | |
alm3_squared = abs_alm3**2 | |
print alm3_squared | |
"""" | |
OUTPUT: | |
[-0.0705577 0.00345596 -0.01671209 0.05607852] | |
[ 0.0705577 0.00345596 0.01671209 0.05607852] | |
[ 4.97838906e-03 1.19436354e-05 2.79293997e-04 3.14480045e-03] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add evaluation for empirical C3
CODE
"""
anafastCl = hp.anafast(hoggarray, lmax=32)
len(anafastCl) = 33
remove monopole and dipole values, l=0, l=1
hatCl = anafastCl[2:] #len() = 31, type() = np.ndarray
hatC3 = hatCl[1] # index 0 = C2, 1 = C3, etc.
hatC4 = hatCl[2]
print "Empirical C_3 from Healpix anafast is"
print hatC3
print "The value 7_C3 is "
print 7_hatC3
"""
OUTPUT
Empirical C_3 from Healpix anafast is
0.00186721021751
The value 7*C3 is
0.0130704715226