Created
December 5, 2015 10:53
-
-
Save evanthebouncy/4e71fb923697c6fcd7ef to your computer and use it in GitHub Desktop.
trying to understand bidirectional rnn
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
batch_size = 1 | |
input_size = 2 | |
num_units = 3 | |
input_length = 8 | |
sess = tf.Session() | |
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)) as scope: | |
# our cells | |
cell_fw = tf.nn.rnn_cell.LSTMCell(num_units=num_units, | |
input_size=input_size) | |
cell_bw = tf.nn.rnn_cell.LSTMCell(num_units=num_units, | |
input_size=input_size) | |
initializer = tf.random_uniform_initializer(-0.01, 0.01, seed=123) | |
sequence_length = tf.placeholder(tf.int64) | |
cell_fw = tf.nn.rnn_cell.LSTMCell( | |
num_units, input_size, initializer=initializer) | |
cell_bw = tf.nn.rnn_cell.LSTMCell( | |
num_units, input_size, initializer=initializer) | |
# input_seq = tf.placeholder(tf.float32, [input_length, None, input_size]) | |
input_seq = input_length * [tf.placeholder(tf.float32, shape=(batch_size, input_size))] | |
outputs = tf.nn.bidirectional_rnn( | |
cell_fw, cell_bw, input_seq, dtype=tf.float32, | |
sequence_length=sequence_length) | |
inputs_values = [np.random.randn(batch_size, input_size) for i in range(input_length)] | |
sess.run([tf.initialize_all_variables()]) | |
feed_dict = {} | |
for i in range(input_length): | |
feed_dict[input_seq[i]] = inputs_values[i] | |
feed_dict[sequence_length] = [5] | |
res = sess.run([outputs], feed_dict=feed_dict) | |
print(res) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment