Last active
June 1, 2017 04:30
-
-
Save even4void/5074855 to your computer and use it in GitHub Desktop.
Illustration of within-unit vs. random-effect model predictions.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(lme4) | |
data(sleepstudy) | |
## Fit individual regression lines for each subject | |
dfrm <- coef(lmList(Reaction ~ Days | Subject, sleepstudy)) | |
## Estimate parameters of a random intercept and random intercept and slope model | |
m1 <- lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy) | |
m2 <- lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy) | |
## Put all estimates (intercept + slope for each model) into the same data.frame | |
dfrm <- cbind.data.frame(dfrm, | |
as.data.frame(coef(m1)[["Subject"]]), | |
as.data.frame(coef(m2)[["Subject"]])) | |
## Kernel density estimates for the distribution of individual intercepts | |
intcpt.dens <- list() | |
idx <- seq(1, ncol(dfrm), by=2) | |
for (i in seq_along(idx)) | |
intcpt.dens[[i]] <- density(as.numeric(dfrm[,idx[i]]), adj=1.4) | |
len <- length(intcpt.dens[[1]]$x) | |
## Show all | |
cols <- c("grey30", "#D95F02", "#669999") | |
xyplot(Reaction ~ Days, data=sleepstudy, | |
xlim=c(0, 8), ylim=c(150, 450), ylab="Fitted reaction time", | |
scales=list(x=list(at=seq(0, 8, by=1))), | |
key=list(corner=c(0,1), text=list(c("within-group", | |
"random intercept", | |
"random intercept and slope"), | |
col=cols, cex=0.8)), | |
panel=function(...) { | |
apply(dfrm[,1:2], 1, panel.abline, col=cols[1], alpha=.5, lwd=1.2) | |
apply(dfrm[,3:4], 1, panel.abline, col=cols[2], alpha=.5, lwd=1.2) | |
for (i in seq_along(idx)) | |
panel.lines(x=c(intcpt.dens[[i]]$y*100, rep(0, len)), | |
y=c(intcpt.dens[[i]]$x, rev(intcpt.dens[[i]]$x)), col=cols[i], lwd=1.8) | |
}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment