Last active
December 11, 2015 22:38
-
-
Save everdark/4670414 to your computer and use it in GitHub Desktop.
Baysian simulation for the German tank problem
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### Baysian estimate simulation of the "German tank problem" | |
### Coded by everdark, since 2013-01-30 | |
## Simple simulation | |
set.seed(12345) | |
j <- 1000 | |
range <- c(14:50) | |
result <- list() | |
temp <- numeric(j) | |
for (k in range) { | |
for (i in 1:j) { | |
temp[i] <- max(sample(1:k, 4)) | |
} | |
result[[k]] <- temp | |
} | |
result <- | |
unlist( | |
lapply(result, function(x) prop.table(table(x))["14"]) | |
) | |
result[is.na(result)] <- 0 | |
plot(result) | |
sum(result*seq(1, length(result), by=1)) / sum(result) | |
## Single node computing | |
set.seed(12345) | |
j <- 1000 | |
paraMax <- 100 | |
sampMax <- 14 | |
sampsize <- 4 | |
range <- c(sampMax:paraMax) | |
temp <- numeric(j) | |
result.1 <- list() | |
outcome <- numeric(max(range)) | |
system.time( | |
for (k in range) { | |
for (i in 1:j) temp[i] <- max(sample(1:k, sampsize)) | |
result.1[[k]] <- temp | |
result.2 <- | |
unlist( | |
lapply(result.1, function(x) prop.table(table(x))[as.character(sampMax)]) | |
) | |
result.2[is.na(result.2)] <- 0 | |
outcome[k] <- sum(result.2*seq(1, length(result.2), by=1)) / sum(result.2) | |
} | |
) | |
plot(outcome) | |
## Parallel computing (4-way) | |
library(snow) # "Simple Network Of Workstation" | |
library(rlecuyer) # parallel random number generator | |
tank.simul.2 <- function(kchunks, RANGE, times, nsample) { | |
j <- times | |
paraMax <- max(RANGE) | |
sampMax <- min(RANGE) | |
sampsize <- nsample | |
result.1 <- data.frame(shell=rep(-1, j)) | |
temp <- numeric(j) | |
for (k in kchunks) { | |
for (i in 1:j) { | |
temp[i] <- max(sample(1:k, sampsize)) | |
} | |
result.1 <- cbind(result.1, temp) | |
colnames(result.1)[ncol(result.1)] <- as.character(k) | |
} | |
subset(result.1, select=-c(shell)) | |
} | |
cluster <- makeCluster(type="SOCK", | |
c("localhost", "localhost", "localhost", "localhost")) | |
clusterSetupRNGstream(cluster, seed=rep(12345,6)) | |
range <- c(14:500) | |
kchunks <- clusterSplit(cluster, range) | |
system.time( | |
result.1 <- clusterApply(cluster, kchunks, | |
tank.simul.2, RANGE=range, times=5000, nsample=4) | |
) | |
stopCluster(cluster) | |
result.1 <- as.data.frame(result.1) | |
result.2 <- | |
apply( | |
result.1, 2, | |
function(x) prop.table(table(x))[as.character(min(range))] | |
) | |
result.2[is.na(result.2)] <- 0 | |
outcome <- numeric(length(range)) | |
for (end in min(range):max(range)) { | |
i <- end - min(range) + 1 | |
outcome[i] <- sum(result.2[1:i]*seq(min(range), end, by=1)) / sum(result.2[1:i]) | |
} | |
plot(outcome) | |
abline(h=19.5, col="red") | |
outcome[length(outcome)] | |
final <- outcome[length(outcome)] | |
min(which(outcome==final)) | |
## Asymptotic simulation | |
cluster <- makeCluster(type="SOCK", | |
c("localhost", "localhost", "localhost", "localhost")) | |
clusterSetupRNGstream(cluster, seed=rep(12345,6)) | |
range <- c(14:1000) | |
kchunks <- clusterSplit(cluster, range) | |
iterator <- seq(1000, 10000, by=250) | |
outcome <- numeric(length(iterator)) | |
i <- 0 | |
for (t in iterator) { | |
i <- i + 1 | |
result.1 <- | |
as.data.frame( | |
clusterApply( | |
cluster, kchunks, tank.simul.2, RANGE=range, times=t, nsample=4 | |
) | |
) | |
result.2 <- | |
apply( | |
result.1, 2, | |
function(x) prop.table(table(x))[as.character(min(range))] | |
) | |
result.2[is.na(result.2)] <- 0 | |
outcome[i] <- sum(result.2*seq(min(range), max(range), by=1)) / sum(result.2) | |
} | |
stopCluster(cluster) | |
plot(iterator, outcome) | |
Bestimate <- (min(range)-1) * (3) / (2) | |
abline(h=Bestimate, col="red") | |
mean(outcome) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment