Created
November 29, 2018 03:23
-
-
Save evincarofautumn/66877abc3b0dc136e0b0afa9a9302a36 to your computer and use it in GitHub Desktop.
Toying around with proofy-lookin Haskell code
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE | |
BangPatterns, | |
DataKinds, | |
GADTs, | |
KindSignatures, | |
PolyKinds, | |
ScopedTypeVariables, | |
TypeFamilies, | |
TypeOperators #-} | |
data N where | |
Z :: N | |
S :: N -> N | |
data N' (n :: N) where | |
Z' :: N' 'Z | |
S' :: forall n. N' n -> N' ('S n) | |
type family (a :: N) + (b :: N) :: N where | |
'Z + n = n | |
'S m + n = 'S (m + n) | |
right_identity | |
:: forall n. N' n -> (n + 'Z) := n | |
addition | |
:: forall n m. N' n -> N' m -> (n + 'S m) := 'S (n + m) | |
commutative | |
:: forall n m. N' n -> N' m -> (n + m) := (m + n) | |
add | |
:: forall m n. N' m -> N' n -> N' (m + n) | |
add_commutative | |
:: forall m n. N' m -> N' n -> N' (n + m) | |
right_identity--base | |
(Z' :: N' n) | |
----------------------- | |
= Refl :: (n + 'Z) := n | |
right_identity--inductive | |
(S' n :: N' n) | |
| Refl <- right_identity n | |
--------------------------- | |
= Refl :: (n + 'Z) := n | |
addition--base | |
(Z' :: N' n) | |
(_ :: N' m) | |
---------------------------------- | |
= Refl :: (n + 'S m) := 'S (n + m) | |
addition--inductive | |
(S' n' :: N' n) | |
(m :: N' m) | |
| Refl <- addition n' m | |
------------------------------------ | |
= Refl :: (n + 'S m) := 'S (n + m) | |
commutative--base | |
(Z' :: N' n) | |
(m :: N' m) | |
| Refl <- right_identity m | |
---------------------------- | |
= Refl :: (n + m) := (m + n) | |
commutative--inductive | |
(S' n :: N' n) | |
(m :: N' m) | |
| Refl <- commutative n m | |
, Refl <- addition m n | |
----------------------------- | |
= Refl :: (n + m) := (m + n) | |
add--base | |
(Z' :: N' m) | |
(x :: N' n) | |
------------------- | |
= x :: N' (m + n) | |
add--inductive | |
(S' x :: N' m) | |
(y :: N' n) | |
---------------------------- | |
= S' (add x y) :: N' (m + n) | |
add_commutative | |
(x :: N' m) | |
(y :: N' n) | |
| Refl <- commutative x y | |
---------------------------- | |
= add x y :: N' (n + m) | |
data (a :: k1) := (b :: k2) where | |
Refl :: a := a | |
instance Show N where | |
show = show . go 0 | |
where | |
go !acc Z = acc | |
go !acc (S n) = go (succ acc) n | |
instance Show (N' n) where | |
show = show . go 0 | |
where | |
go :: forall n. Integer -> N' n -> Integer | |
go !acc Z' = acc | |
go !acc (S' n) = go (succ acc) n |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment