Skip to content

Instantly share code, notes, and snippets.

@evmcheb
Created October 11, 2019 13:34
Show Gist options
  • Save evmcheb/1ee101789472c38fcab94b8b007278d7 to your computer and use it in GitHub Desktop.
Save evmcheb/1ee101789472c38fcab94b8b007278d7 to your computer and use it in GitHub Desktop.
leverage the librosa python library to extract a spectrogram
import librosa.display, os, gc
import numpy as np
import matplotlib.pyplot as plt
def extract_spectrogram(fname, iname):
audio, sr = librosa.load(fname, res_type='kaiser_fast')
S = librosa.feature.melspectrogram(audio, sr=sr, n_mels=128)
log_S = librosa.power_to_db(S, ref=np.max)
fig = plt.figure(figsize=[1, 1])
ax = fig.add_subplot(111)
fig.subplots_adjust(left=0,right=1,bottom=0,top=1)
ax.axis("off")
ax.axis("tight")
plt.margins(0)
librosa.display.specshow(log_S, sr=sr)
fig.savefig(iname, dpi=100, pad_inches=0)
plt.close(fig)
plt.close('all')
del audio, S, log_S, ax, fig
samples_folder = "soundscapes/"
images_folder = "images/"
already = os.listdir(images_folder)
d = os.listdir(samples_folder)
for i, f in enumerate(d):
extract_spectrogram(samples_folder+f, f"{images_folder}/{f.replace('.wav', '.png')}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment