-
-
Save evrial/0dbd889d5225959c5a56876ab142a05e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
from datetime import timedelta | |
from datasets import load_dataset | |
from txtai import LLM | |
from txtai.pipeline import Labels, HFTrainer | |
def prompt(text): | |
text = f""" | |
Given the following text: | |
{text} | |
Analyze the sentiment and apply one of the following labels: | |
0-sadness | |
1-joy | |
2-love | |
3-anger | |
4-fear | |
5-surprise | |
Only return the label. | |
""".strip() | |
return [{"role": "user", "content": text}] | |
def train(path, epochs, lora): | |
# Train model | |
trainer = HFTrainer() | |
model, tokenizer = trainer( | |
path, | |
ds["train"], | |
lora=lora, | |
num_train_epochs=epochs, | |
per_device_train_batch_size=4 if lora else 8 | |
) | |
# Print parameters | |
print(f"PARAMETERS: {model.num_parameters():,}") | |
# Merge adapter | |
if lora: | |
model = model.merge_and_unload() | |
return Labels((model, tokenizer), dynamic=False) | |
def test(model): | |
total, correct = 0, 0 | |
for row in ds["test"]: | |
if isinstance(model, LLM): | |
result = model(prompt(row["text"]))[0] | |
else: | |
result = model(row["text"])[0][0] | |
total += 1 | |
correct += 1 if row["label"] == int(result) else 0 | |
print(f"ACCURACY: {correct} / {total} ({correct / total:.2f})") | |
def evaluate(path, epochs=3, lora=False): | |
start = time.time() | |
# Train model, if necessary | |
model = train(path, epochs, lora) if isinstance(path, str) else path | |
# Run model against test dataset | |
test(model) | |
print(f"ELAPSED: {timedelta(seconds=time.time() - start)}") | |
# Load dataset | |
ds = load_dataset("dair-ai/emotion") | |
# Zero-shot prompts with LLMs | |
evaluate(LLM("microsoft/Phi-3-mini-4k-instruct")) | |
# Evaluate encoder-only models | |
evaluate("google/bert_uncased_L-2_H-128_A-2", epochs=10) | |
evaluate("google-bert/bert-base-uncased", epochs=5) | |
# Fine-tune LLM for classification | |
evaluate("microsoft/Phi-3-mini-4k-instruct", epochs=3, lora=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment