Created
February 22, 2017 19:48
-
-
Save exelban/a2a844621cdbbf49cbf23cd353932fce to your computer and use it in GitHub Desktop.
Simple logical function in neural network.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
X_and = np.array([[0,0], [0,1], [1,0], [1,1]]) | |
Y_and = np.array([ [0], [0], [0], [1]]) | |
X_or = np.array([[0, 0], [0,1], [1,0], [1,1]]) | |
Y_or = np.array([ [0], [1], [1], [1]]) | |
X_nor = np.array([[0,0], [0,1], [1,0], [1,1]]) | |
Y_nor = np.array([ [1], [0], [0], [0]]) | |
X_xor = np.array([[0,0], [0,1], [1,0], [1,1]]) | |
Y_xor = np.array([ [0], [1], [1], [0]]) | |
iteration = 10000 | |
inputLayerSize, hiddenLayerSize, outputLayerSize = 2, 3, 1 | |
w_l1 = np.random.uniform(size=(inputLayerSize, hiddenLayerSize)) | |
w_l2 = np.random.uniform(size=(hiddenLayerSize,outputLayerSize)) | |
hiddenLayer_val = np.random.uniform(size=(inputLayerSize, hiddenLayerSize)) | |
outputLayer_val = np.random.uniform(size=(hiddenLayerSize,outputLayerSize)) | |
predict_and = np.random.uniform(size=(hiddenLayerSize,outputLayerSize)) | |
predict_or = np.random.uniform(size=(hiddenLayerSize,outputLayerSize)) | |
predict_nor = np.random.uniform(size=(hiddenLayerSize,outputLayerSize)) | |
predict_xor = np.random.uniform(size=(hiddenLayerSize,outputLayerSize)) | |
def sigmoid (x): return 1/(1 + np.exp(-x)) | |
def sigmoid_(x): return x * (1 - x) | |
for a in range(4): | |
X = X_and if a == 0 else X_or if a == 1 else X_nor if a == 2 else X_xor | |
Y = Y_and if a == 0 else Y_or if a == 1 else Y_nor if a == 2 else Y_xor | |
for i in range(iteration): | |
hiddenLayer_val = sigmoid(np.dot(X, w_l1)) | |
outputLayer_val = sigmoid(np.dot(hiddenLayer_val, w_l2)) | |
error = Y - outputLayer_val | |
dF2 = error * sigmoid_(outputLayer_val) | |
dF1 = dF2.dot(w_l2.T) * sigmoid_(hiddenLayer_val) | |
w_l2 += hiddenLayer_val.T.dot(dF2) | |
w_l1 += X.T.dot(dF1) | |
if a == 0: | |
predict_and = Y.T | |
elif a == 1: | |
predict_or = Y.T | |
elif a == 2: | |
predict_nor = Y.T | |
elif a == 3: | |
predict_xor = Y.T | |
print("Predict AND: " + str(predict_and)) | |
print("Predict OR: " + str(predict_or)) | |
print("Predict NOR: " + str(predict_nor)) | |
print("Predict XOR: " + str(predict_xor)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment