Created
April 11, 2017 12:00
-
-
Save explodecomputer/0a80a501379fee161d19ec9fc3b92524 to your computer and use it in GitHub Desktop.
Age of menarche index of suspicion
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(TwoSampleMR) | |
library(MRInstruments) | |
library(ggplot2) | |
library(dplyr) | |
library(reshape2) | |
library(classInt) | |
calculate_ios <- function(exposure_dat, outcome_dat) | |
{ | |
require(dplyr) | |
require(reshape2) | |
require(classInt) | |
ios <- dplyr::group_by(outcome_dat, SNP) %>% | |
dplyr::summarise( | |
ios_mean = sum(vgu, na.rm=TRUE), | |
ios_sd = sd(vgu, na.rm=TRUE), | |
ios_iqr = quantile(vgu, 0.75, na.rm=TRUE) - quantile(vgu, 0.25, na.rm=TRUE), | |
ios_median = median(vgu, na.rm=TRUE), | |
ios_95 = quantile(vgu, 0.95, na.rm=TRUE), | |
ios_max = max(vgu, na.rm=TRUE) | |
) %>% melt | |
ios <- merge(ios, subset(exposure_dat, select=c(SNP, gene.exposure, vgx)), by="SNP") | |
ios$ios_ratio <- ios$value / ios$vgx | |
W <- sum(outcome_dat$se.outcome^2) | |
ios <- group_by(ios, variable) %>% | |
do({ | |
x <- as.data.frame(., stringsAsFactors=FALSE) | |
x$value <- x$value / sum(x$value) * W | |
x$ios_ratio <- x$ios_ratio / sum(x$ios_ratio) * W | |
return(x) | |
}) | |
ios <- dplyr::group_by(ios, variable) %>% | |
dplyr::mutate( | |
jenks = findCols(classIntervals(value, n=2, style="jenks")), | |
jenks_ratio = findCols(classIntervals(ios_ratio, n=2, style="jenks")) | |
) | |
ios$lab <- ios$gene.exposure | |
ios <- group_by(ios, variable) %>% | |
do({ | |
.$lab[.$value < quantile(.$value, 0.9) & .$vgx < quantile(.$vgx, 0.9)] <- NA | |
return(.) | |
}) | |
return(ios) | |
} | |
#### | |
# Find 122 AOM SNPs | |
data(gwas_catalog) | |
a <- subset(gwas_catalog, grepl("menarche", Phenotype, ignore.case=TRUE) & PubmedID == "25231870") | |
aom_exposure <- format_data(a) | |
# Get 452 metabolite traits from Shin et al | |
ao <- available_outcomes() | |
shin <- subset(ao, grepl("Shin", author)) | |
# Extracting 122 SNPs from each of 452 metabolutes | |
# This takes about an hour or so | |
aom_shin <- extract_outcome_data(aom_exposure$SNP, shin$id) | |
# Calculate Vg for each SNP-trait association | |
aom_exposure$vgx <- aom_exposure$beta.exposure^2 * 2 * aom_exposure$eaf.exposure * (1 - aom_exposure$eaf.exposure) | |
aom_shin$vgu <- aom_shin$beta.outcome^2 * 2 * aom_shin$eaf.outcome * (1 - aom_shin$eaf.outcome) | |
save(aom_exposure, aom_shin, file="aom_shin.rdata") | |
#### | |
load("aom_shin.rdata") | |
aom_ios <- calculate_ios(aom_exposure, aom_shin) | |
a <- group_by(aom_shin, SNP) %>% summarise(vgu=median(vgu)) | |
b <- merge(a, aom_exposure, by="SNP") | |
ggplot(b, aes(x=gene.exposure, y=vgu)) + geom_point() + labs(x="Urate gene", y="Index of suspicion (metabolite source)") + theme(axis.text.x=element_text(angle=90)) | |
ggplot(aom_ios, aes(x=gene.exposure, y=value)) + | |
geom_point(aes(colour=variable)) + theme(axis.text.x=element_text(angle=90, hjust=0.5, vjust=0.5)) + | |
labs(x="Age of menarche gene", y="Index of suspicion (metabolite source", colour="IoS method") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment