Created
April 6, 2017 10:21
-
-
Save explodecomputer/bae9d3460eed18e116bd7a26eacbb936 to your computer and use it in GitHub Desktop.
alternative survival bias
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(dplyr) | |
# X causes DEATH | |
# P causes DEATH | |
# AGE causes DEATH | |
# G causes X | |
# AGE causes Y | |
# - IF cases and controls are AGE matched then NO SURVIVAL BIAS | |
n <- 1000000 | |
age <- runif(n) | |
g <- rbinom(n, 2, 0.5) | |
x <- g + rnorm(n) | |
p <- rnorm(n) | |
o <- age + rnorm(n) | |
probdeath <- pnorm(scale(p + x + age)) | |
death <- rbinom(n, 1, probdeath) | |
dat <- data.frame(a=age, g=g, x=x, p=p, o=o, d=death) | |
summary(lm(x ~ p, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ p, filter(dat)))$coefficients[2,4] | |
summary(lm(g ~ p, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(g ~ p, filter(dat)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat)))$coefficients[2,4] | |
summary(lm(x ~ a, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ a, filter(dat)))$coefficients[2,4] | |
summary(lm(g ~ a, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(g ~ a, filter(dat)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat)))$coefficients[2,4] | |
summary(lm(g ~ o, filter(dat, d == 1))) | |
summary(lm(g ~ o + a, filter(dat, d == 1))) | |
# X causes DEATH | |
# P causes DEATH | |
# AGE causes DEATH | |
# G causes X | |
# AGE and P cause Y | |
# - IF cases and controls are AGE matched then SURVIVAL STILL BIAS OCCURS | |
n <- 1000000 | |
age <- runif(n) | |
g <- rbinom(n, 2, 0.5) | |
x <- g + rnorm(n) | |
p <- rnorm(n) | |
o <- age + p + rnorm(n) | |
probdeath <- pnorm(scale(p + x + age)) | |
death <- rbinom(n, 1, probdeath) | |
dat <- data.frame(a=age, g=g, x=x, p=p, o=o, d=death) | |
summary(lm(x ~ p, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ p, filter(dat)))$coefficients[2,4] | |
summary(lm(g ~ p, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(g ~ p, filter(dat)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat)))$coefficients[2,4] | |
summary(lm(x ~ a, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ a, filter(dat)))$coefficients[2,4] | |
summary(lm(g ~ a, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(g ~ a, filter(dat)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat, d == 1)))$coefficients[2,4] | |
summary(lm(x ~ o, filter(dat)))$coefficients[2,4] | |
summary(lm(g ~ o, filter(dat, d == 1))) | |
summary(lm(g ~ o + a, filter(dat, d == 1))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment