-
-
Save explodecomputer/ca96eb557c12a2df54392790c7cbc62c to your computer and use it in GitHub Desktop.
ld and imputation demo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
n <- 1000 | |
nsnp <- 10 | |
r <- matrix(0.8, nsnp, nsnp) | |
diag(r) <- 1 | |
x1 <- rmvnorm(n, rep(0, nsnp), sigma=r) | |
x2 <- rmvnorm(n, rep(0, nsnp), sigma=r) | |
x1[1:500, nsnp] <- x2[1:500, 1] | |
for(i in 1:nsnp) | |
{ | |
x2[,i] <- x2[,i] + rnorm(n, sd=i/(nsnp*2)) | |
x1[,i] <- x1[,i] + rnorm(n, sd=(nsnp-i+1)/(nsnp*2)) | |
} | |
x <- cbind(x1, x2) | |
cv <- 10 | |
g1 <- 5 | |
g2 <- 15 | |
melted_correlation_matrix <- melt(cor(x)) | |
dot_dat <- data.frame(Var1=c(cv, g1, g2), Var2=c(cv, g1, g2), value=1, val=c("Causal variant", "Genotyped", "Genotyped")) | |
# dot_dat <- data.frame(Var1=nsnp, Var2=nsnp, value=1) | |
ggplot(melted_correlation_matrix, aes(x=Var1, y=Var2, fill=value)) + | |
geom_tile() + | |
scale_fill_gradient(low="white", high="red") + | |
theme(axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) + | |
geom_point(data=dot_dat, aes(colour=val), size=3) + | |
labs(x="SNP number", y="SNP number", fill="R-square", colour="") | |
y <- x[,10] * sqrt(0.1) + rnorm(n, sd=sqrt(0.9)) | |
cor(y, x[,10])^2 | |
summary(lm(y ~ x[,10])) | |
summary(lm(y ~ x[,5])) | |
summary(lm(y ~ x[,15])) | |
summary(lm(y ~ x[,5] + x[,15])) | |
pval <- rep(0, ncol(x)) | |
for(i in 1:ncol(x)) | |
{ | |
pval[i] <- summary(lm(y ~ x[,i]))$coefficients[2,4] | |
} | |
dat <- data.frame(pval=-log10(pval), snp=1:ncol(x), lab="Untyped SNP", stringsAsFactors=FALSE) | |
dat$lab[cv] <- "Causal variant" | |
dat$lab[g1] <- "Genotyped variant" | |
dat$lab[g2] <- "Genotyped variant" | |
ggplot(dat, aes(x=snp, y=pval)) + geom_point(aes(colour=lab)) | |
plot(-log10(pval), ylim=c(0,max(-log10(pval)))) | |
y <- x[,5] * sqrt(0.1) + rnorm(n, sd=sqrt(0.9)) | |
cor(y, x[,5])^2 | |
summary(lm(y ~ x[,5])) | |
summary(lm(y ~ x[,4])) | |
summary(lm(y ~ x[,15])) | |
summary(lm(y ~ x[,4] + x[,15])) | |
pval <- rep(0, ncol(x)) | |
for(i in 1:ncol(x)) | |
{ | |
pval[i] <- summary(lm(y ~ x[,i]))$coefficients[2,4] | |
} | |
plot(-log10(pval), ylim=c(0,max(-log10(pval)))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment