Skip to content

Instantly share code, notes, and snippets.

@explodecomputer
Created May 27, 2016 10:11
Show Gist options
  • Save explodecomputer/d96c87939529efe355af8b5f91631042 to your computer and use it in GitHub Desktop.
Save explodecomputer/d96c87939529efe355af8b5f91631042 to your computer and use it in GitHub Desktop.
matched case control logistic regression
n <- 1000
g <- rbinom(n, 2, 0.5)
y <- g + rnorm(n)
yb <- rep(0, n)
yb[y >= median(y)] <- 1
dat <- data.frame(y=y, yb=yb, g=g)
dat <- dat[order(dat$yb), ]
dat$group <- rep(1:sum(yb==0), 2)
# Logistic regression fitting family as random effect
library(lme4)
model1 <- summary(glmer(yb ~ g + (1|group), family="binomial", data=dat))
# Logistic regression fitting family as fixed effects
library(lme4)
model2 <- summary(glm(yb ~ g + as.factor(group), family="binomial", data=dat))
# Using conditional logistic regression
library(survival)
model3 <- summary(clogit(yb ~ g + strata(group), data=dat ))
model1
model2
model3
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment