Created
December 11, 2022 20:02
-
-
Save ezragol/5fc550bbc551e1b73cc781a5cf91d26e to your computer and use it in GitHub Desktop.
fraction codecheck v2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* The Fraction class from http://skylit.com/javamethods3/studentfiles.zip | |
* where the following are also implemented: | |
* - all methods of FractionI; | |
* | |
* JM3e Chapter 10.3 - Author: Alex | |
* @author EZRA GOLDNER <[email protected]> | |
*/ | |
public class Fraction implements FractionI, Comparable<Fraction> | |
{ | |
/////////////////////////////// FIELDS /////////////////////////////// | |
private int num; | |
private int den; | |
//////////////////////////// CONSTRUCTORS //////////////////////////// | |
public Fraction() { // no-args constructor | |
num = 0; | |
den = 1; | |
} | |
public Fraction(int n) { | |
num = n; | |
den = 1; | |
} | |
public Fraction(int num, int den) { | |
if (den == 0) | |
throw new IllegalArgumentException( | |
"Fraction construction error: denominator is 0"); | |
// Otherwise... initialize fields and reduce to canonical form | |
this.num = num; | |
this.den = den; | |
this.reduce(); | |
} | |
// Copy constructor | |
public Fraction(Fraction other) { | |
num = other.num; | |
den = other.den; | |
} | |
////////////////////////////// METHODS /////////////////////////////// | |
// Accessor methods | |
public int getNumerator() { return num; } | |
public int getDenominator() { return den; } | |
// Returns the value of this fraction as a double | |
public double doubleValue() { | |
return (double) num / (double) den; | |
} | |
// Returns a string representation of this fraction | |
@Override | |
public String toString() { | |
return num + "/" + den; | |
} | |
// Returns the sum of this fraction and other | |
public Fraction add(Fraction other) { | |
int common = gcd(this.den, other.den); | |
int thisDivided = this.den / common; | |
int thatDivided = other.den / common; | |
return new Fraction(this.num * thatDivided + other.num * thisDivided, this.den * thatDivided); | |
} | |
// Returns the sum of this fraction and m | |
public Fraction add(int m) { | |
return add(new Fraction(m)); | |
} | |
// Returns the product of this fraction and other | |
public Fraction multiply(Fraction other) { | |
int aDcommon = gcd(this.num, other.den); | |
int bCcommon = gcd(this.den, other.num); | |
int thisNewNum = this.num / aDcommon; | |
int thatNewDen = other.den / aDcommon; | |
int thisNewDen = this.den / bCcommon; | |
int thatNewNum = other.num / bCcommon; | |
return new Fraction(thisNewNum * thatNewNum, thisNewDen * thatNewDen); | |
} | |
// Returns the product of this fraction and m | |
public Fraction multiply(int m) { | |
// return new Fraction(num * m, den); | |
return multiply(new Fraction(m)); | |
} | |
// Returns the opposite of this fraction | |
public Fraction negate() { | |
return multiply(-1); | |
} | |
// Returns the difference of this fraction and other | |
public Fraction subtract(Fraction other) { | |
return add(other.negate()); | |
} | |
// Returns the difference of this fraction and m | |
public Fraction subtract(int m) { | |
return add(m * -1); | |
} | |
// Returns the reciprocal of this fraction | |
public Fraction reciprocal() { | |
return new Fraction(den, num); | |
} | |
// Returns the quotient of this fraction and other | |
public Fraction divide(Fraction other) { | |
return multiply(other.reciprocal()); | |
} | |
// Returns the quotient of this fraction and m | |
public Fraction divide(int m) { | |
return multiply(new Fraction(1, m)); | |
} | |
// Return a negative integer, zero, or a positive integer as this Fraction is <, ==, > than the other Fraction. | |
public int compareTo(Fraction other) { | |
Fraction subtracted = subtract(other); | |
if (subtracted.num < 0) | |
return -1; | |
else if (subtracted.num > 0) | |
return 1; | |
return 0; | |
} | |
// Return true if this equals that | |
public boolean equals(Fraction that) { | |
return that.num == num && that.den == den; | |
} | |
// http://www.technofundo.com/tech/java/equalhash.html | |
// Returns true if this has the same value as other, otherwise false | |
@Override | |
public boolean equals(Object other) { | |
if (other == this) return true; | |
if (other == null) return false; | |
if (other.getClass() != this.getClass()) return false; | |
Fraction that = (Fraction) other; | |
return equals(that); | |
} | |
// Return a hashcode for this fraction | |
@Override | |
public int hashCode() { | |
int hash = 17; | |
hash = 31 * hash + num; | |
hash = 31 * hash + den; | |
return hash; | |
} | |
////////////////////////// PRIVATE METHODS /////////////////////////// | |
// Reduce this fraction to canonical form: gcd(num, den) == 1 and den > 0 | |
private void reduce() { | |
if (num == 0) { | |
den = 1; | |
return; | |
} | |
if (den < 0) { | |
num = -num; | |
den = -den; | |
} | |
int q = gcd(num, den); | |
num /= q; | |
den /= q; | |
} | |
// Returns the greatest common divisor of two integers | |
private static int gcd(int n, int d) { | |
if (d == 0) return Math.abs(n); | |
return gcd(d, n % d); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment