Created
April 27, 2013 01:31
-
-
Save ezy023/5471513 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| require 'mathn' | |
| # def time_logger(function) | |
| # start = Time.now | |
| # function | |
| # puts "It took #{(Time.now - start)/60} minutes to run #{function}" | |
| # end | |
| # PROBLEM 2 | |
| # def fibonacci | |
| # fib_array = [1,2] | |
| # i = 1 | |
| # while (fib_array[i] + fib_array[i-1]) < 4000000 | |
| # fib_array << fib_array[i] + fib_array[i-1] | |
| # i += 1 | |
| # end | |
| # even_array = fib_array.find_all(&:even?) | |
| # puts even_array.inject(:+) | |
| # end | |
| # start = Time.now | |
| # fibonacci | |
| # puts Time.now - start | |
| # PROBLEM 3 -> NOT SOLVED YET | |
| # require 'mathn' | |
| class Fixnum | |
| def prime? | |
| factors = [] | |
| (1..self).each do |num| | |
| factors << num if self % num == 0 | |
| end | |
| return factors.length == 2 | |
| end | |
| end | |
| # def largest_prime(n) | |
| # prime_factors = [] | |
| # (1..n).each do |i| | |
| # prime_factors << i if n % i == 0 && i.prime? | |
| # end | |
| # puts prime_factors.max | |
| # end | |
| # largest_prime(600851475143) | |
| # PROBLEM 4 | |
| # def palindrome_num | |
| # a = *(100...1000) | |
| # b = *(100...1000) | |
| # pals = [] | |
| # i = 0 | |
| # while i < b.length | |
| # a.each { |num| pals << num * b[i] if (num * b[i]).to_s == (num * b[i]).to_s.reverse } | |
| # i += 1 | |
| # end | |
| # puts pals.max | |
| # end | |
| # PROBLEM 5 | |
| # class Fixnum | |
| # def divisible_by_those? | |
| # i = 1 | |
| # verdict = true | |
| # while i <= 20 && verdict == true | |
| # if self % i == 0 | |
| # verdict = true | |
| # else | |
| # verdict = false | |
| # end | |
| # i += 1 | |
| # end | |
| # verdict | |
| # end | |
| # end | |
| # start = Time.now | |
| # i = 1 | |
| # while i < 1000000000 | |
| # puts i if i.divisible_by_those? | |
| # i += 1 | |
| # end | |
| # puts Time.now - start | |
| # PROBLEM 6 | |
| # array = *(1..100) | |
| # sum_of_square = array.map { |i| i**2 }.inject(:+) | |
| # square_of_sum = (array.inject(:+))**2 | |
| # puts square_of_sum - sum_of_square | |
| # PROBLEM 7 | |
| class Fixnum | |
| def is_prime? | |
| for i in 2..(self - 1) | |
| if self % i == 0 | |
| return false | |
| end | |
| end | |
| end | |
| # end | |
| # def find_the_x_prime(prime_in_list_of_primes) | |
| # array_of_primes = [] | |
| # i = 1 | |
| # while array_of_primes.length <= prime_in_list_of_primes | |
| # array_of_primes << i if i.is_prime? | |
| # i += 1 | |
| # end | |
| # puts array_of_primes.last | |
| # end | |
| # start = Time.now | |
| # find_the_x_prime(10001) | |
| # puts (Time.now - start)/60 | |
| # PROBLEM 8 | |
| # number = "73167176531330624919225119674426574742355349194934 | |
| # 96983520312774506326239578318016984801869478851843 | |
| # 85861560789112949495459501737958331952853208805511 | |
| # 12540698747158523863050715693290963295227443043557 | |
| # 66896648950445244523161731856403098711121722383113 | |
| # 62229893423380308135336276614282806444486645238749 | |
| # 30358907296290491560440772390713810515859307960866 | |
| # 70172427121883998797908792274921901699720888093776 | |
| # 65727333001053367881220235421809751254540594752243 | |
| # 52584907711670556013604839586446706324415722155397 | |
| # 53697817977846174064955149290862569321978468622482 | |
| # 83972241375657056057490261407972968652414535100474 | |
| # 82166370484403199890008895243450658541227588666881 | |
| # 16427171479924442928230863465674813919123162824586 | |
| # 17866458359124566529476545682848912883142607690042 | |
| # 24219022671055626321111109370544217506941658960408 | |
| # 07198403850962455444362981230987879927244284909188 | |
| # 84580156166097919133875499200524063689912560717606 | |
| # 05886116467109405077541002256983155200055935729725 | |
| # 71636269561882670428252483600823257530420752963450" | |
| # number = number.gsub("\n", '') | |
| # num_array = number.split(//).map! { |i| i.to_i } | |
| # new_array = [] | |
| # i = 0 | |
| # while i < num_array.length - 4 | |
| # new_array << num_array[i..i+4] | |
| # i += 1 | |
| # end | |
| # p new_array.map! { |num| num.inject(:*) }.sort | |
| # PROBLEM 9 | |
| # a,b,c = 0,0,0 | |
| # for a in 1..1000 | |
| # for b in 1..1000 | |
| # for c in 1..1000 | |
| # puts "a = #{a}, b = #{b}, c = #{c}" if a + b + c == 1000 && a**2 + b**2 == c**2 | |
| # end | |
| # end | |
| # end | |
| # PROBLEM 10 LONG LONG LONG LONG RUNTIME | |
| # class Fixnum | |
| # def is_prime? | |
| # for i in 2..(self - 1) | |
| # if self % i == 0 | |
| # return false | |
| # end | |
| # end | |
| # end | |
| # end | |
| # def sum_primes | |
| # array_of_primes= [] | |
| # j = 2 | |
| # while j < 1000 | |
| # array_of_primes << j if j.is_prime? | |
| # j += 1 | |
| # end | |
| # p array_of_primes | |
| # puts array_of_primes.inject(:+) | |
| # end | |
| # start = Time.now | |
| # sum_primes | |
| # puts (Time.now - start)/60 | |
| # PROBLEM 11 | |
| # PROBLEM 12 | |
| # Fixnum.class_eval do | |
| # def factors | |
| # factor_array = [] | |
| # for i in 1..self | |
| # factor_array << i if self % i == 0 | |
| # end | |
| # factor_array | |
| # end | |
| # end | |
| # triangular_array = [] | |
| # j = 443520 | |
| # counted = 0 | |
| # while counted < 500 | |
| # number = (1..j).inject(:+) | |
| # triangular_array << number | |
| # counted = number.factors.count | |
| # j += 1 | |
| # end | |
| # p triangular_array | |
| # PROBLEM 13 | |
| # number = "37107287533902102798797998220837590246510135740250 | |
| # 46376937677490009712648124896970078050417018260538 | |
| # 74324986199524741059474233309513058123726617309629 | |
| # 91942213363574161572522430563301811072406154908250 | |
| # 23067588207539346171171980310421047513778063246676 | |
| # 89261670696623633820136378418383684178734361726757 | |
| # 28112879812849979408065481931592621691275889832738 | |
| # 44274228917432520321923589422876796487670272189318 | |
| # 47451445736001306439091167216856844588711603153276 | |
| # 70386486105843025439939619828917593665686757934951 | |
| # 62176457141856560629502157223196586755079324193331 | |
| # 64906352462741904929101432445813822663347944758178 | |
| # 92575867718337217661963751590579239728245598838407 | |
| # 58203565325359399008402633568948830189458628227828 | |
| # 80181199384826282014278194139940567587151170094390 | |
| # 35398664372827112653829987240784473053190104293586 | |
| # 86515506006295864861532075273371959191420517255829 | |
| # 71693888707715466499115593487603532921714970056938 | |
| # 54370070576826684624621495650076471787294438377604 | |
| # 53282654108756828443191190634694037855217779295145 | |
| # 36123272525000296071075082563815656710885258350721 | |
| # 45876576172410976447339110607218265236877223636045 | |
| # 17423706905851860660448207621209813287860733969412 | |
| # 81142660418086830619328460811191061556940512689692 | |
| # 51934325451728388641918047049293215058642563049483 | |
| # 62467221648435076201727918039944693004732956340691 | |
| # 15732444386908125794514089057706229429197107928209 | |
| # 55037687525678773091862540744969844508330393682126 | |
| # 18336384825330154686196124348767681297534375946515 | |
| # 80386287592878490201521685554828717201219257766954 | |
| # 78182833757993103614740356856449095527097864797581 | |
| # 16726320100436897842553539920931837441497806860984 | |
| # 48403098129077791799088218795327364475675590848030 | |
| # 87086987551392711854517078544161852424320693150332 | |
| # 59959406895756536782107074926966537676326235447210 | |
| # 69793950679652694742597709739166693763042633987085 | |
| # 41052684708299085211399427365734116182760315001271 | |
| # 65378607361501080857009149939512557028198746004375 | |
| # 35829035317434717326932123578154982629742552737307 | |
| # 94953759765105305946966067683156574377167401875275 | |
| # 88902802571733229619176668713819931811048770190271 | |
| # 25267680276078003013678680992525463401061632866526 | |
| # 36270218540497705585629946580636237993140746255962 | |
| # 24074486908231174977792365466257246923322810917141 | |
| # 91430288197103288597806669760892938638285025333403 | |
| # 34413065578016127815921815005561868836468420090470 | |
| # 23053081172816430487623791969842487255036638784583 | |
| # 11487696932154902810424020138335124462181441773470 | |
| # 63783299490636259666498587618221225225512486764533 | |
| # 67720186971698544312419572409913959008952310058822 | |
| # 95548255300263520781532296796249481641953868218774 | |
| # 76085327132285723110424803456124867697064507995236 | |
| # 37774242535411291684276865538926205024910326572967 | |
| # 23701913275725675285653248258265463092207058596522 | |
| # 29798860272258331913126375147341994889534765745501 | |
| # 18495701454879288984856827726077713721403798879715 | |
| # 38298203783031473527721580348144513491373226651381 | |
| # 34829543829199918180278916522431027392251122869539 | |
| # 40957953066405232632538044100059654939159879593635 | |
| # 29746152185502371307642255121183693803580388584903 | |
| # 41698116222072977186158236678424689157993532961922 | |
| # 62467957194401269043877107275048102390895523597457 | |
| # 23189706772547915061505504953922979530901129967519 | |
| # 86188088225875314529584099251203829009407770775672 | |
| # 11306739708304724483816533873502340845647058077308 | |
| # 82959174767140363198008187129011875491310547126581 | |
| # 97623331044818386269515456334926366572897563400500 | |
| # 42846280183517070527831839425882145521227251250327 | |
| # 55121603546981200581762165212827652751691296897789 | |
| # 32238195734329339946437501907836945765883352399886 | |
| # 75506164965184775180738168837861091527357929701337 | |
| # 62177842752192623401942399639168044983993173312731 | |
| # 32924185707147349566916674687634660915035914677504 | |
| # 99518671430235219628894890102423325116913619626622 | |
| # 73267460800591547471830798392868535206946944540724 | |
| # 76841822524674417161514036427982273348055556214818 | |
| # 97142617910342598647204516893989422179826088076852 | |
| # 87783646182799346313767754307809363333018982642090 | |
| # 10848802521674670883215120185883543223812876952786 | |
| # 71329612474782464538636993009049310363619763878039 | |
| # 62184073572399794223406235393808339651327408011116 | |
| # 66627891981488087797941876876144230030984490851411 | |
| # 60661826293682836764744779239180335110989069790714 | |
| # 85786944089552990653640447425576083659976645795096 | |
| # 66024396409905389607120198219976047599490197230297 | |
| # 64913982680032973156037120041377903785566085089252 | |
| # 16730939319872750275468906903707539413042652315011 | |
| # 94809377245048795150954100921645863754710598436791 | |
| # 78639167021187492431995700641917969777599028300699 | |
| # 15368713711936614952811305876380278410754449733078 | |
| # 40789923115535562561142322423255033685442488917353 | |
| # 44889911501440648020369068063960672322193204149535 | |
| # 41503128880339536053299340368006977710650566631954 | |
| # 81234880673210146739058568557934581403627822703280 | |
| # 82616570773948327592232845941706525094512325230608 | |
| # 22918802058777319719839450180888072429661980811197 | |
| # 77158542502016545090413245809786882778948721859617 | |
| # 72107838435069186155435662884062257473692284509516 | |
| # 20849603980134001723930671666823555245252804609722 | |
| # 53503534226472524250874054075591789781264330331690" | |
| # numarray = number.split(/\n/).map! { |w| w.to_i } | |
| # num_array.inject(:+).to_s[0..9] | |
| # PROBLEM 14 | |
| def collatz(initial_num) | |
| hash = {} | |
| for i in 1..initial_num | |
| a = [i] | |
| while a.last != 1 | |
| if a.last.even? | |
| a << a.last/2 | |
| else | |
| a << a.last*3+1 | |
| end | |
| end | |
| hash[i.to_s] = a.count | |
| end | |
| p hash.sort_by { |number, length| length }.last | |
| end | |
| start = Time.now | |
| collatz(1000000) | |
| puts Time.now - start | |
| # a = [9] | |
| # while a.last != 1 | |
| # if a.last.even? | |
| # a << a.last/2 | |
| # else | |
| # a << a.last*3+1 | |
| # end | |
| # end | |
| # p a | |
| # p a.count | |
| # PROBLEM | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment