Skip to content

Instantly share code, notes, and snippets.

@f0k
Last active December 22, 2022 08:49
Show Gist options
  • Save f0k/2f8402e4dfb6974bfcf1 to your computer and use it in GitHub Desktop.
Save f0k/2f8402e4dfb6974bfcf1 to your computer and use it in GitHub Desktop.
rolling median implementations benchmark
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Compares some algorithms for computing a sliding median of an array.
Results:
scipy.signal.medfilt2d is a bit faster than scipy.ndimage.filter.median_filter
and significantly faster than scipy.signal.medfilt.
Maintaining a sorted list of the window becomes faster than that for a filter
length on the order of 100 items or more. Using the builtin `list`
implementation for that is considerably faster than a `blist.blist`,
`blist.sortedlist` or `sortedcontainers.SortedList`.
In numbers (Python 2.7.6, numpy 1.8.2, scipy 0.13.3, i7-4770S CPU @ 3.10GHz):
Sequence length 100000, filter width 49:
scipy.signal.medfilt: 0.224 s
scipy.signal.medfilt2d: 0.0543 s
scipy.ndimage.filters.median_filter: 0.0588 s
using blist.blist: 0.0971 s
using list: 0.0774 s
using blist.sortedlist: 0.549 s
using sortedcontainers.SortedList: 0.284 s
Sequence length 100000, filter width 99:
scipy.signal.medfilt: 0.495 s
scipy.signal.medfilt2d: 0.103 s
scipy.ndimage.filters.median_filter: 0.108 s
using blist.blist: 0.105 s
using list: 0.0832 s
using blist.sortedlist: 0.595 s
using sortedcontainers.SortedList: 0.291 s
Sequence length 100000, filter width 599:
scipy.signal.medfilt: 3.85 s
scipy.signal.medfilt2d: 0.579 s
scipy.ndimage.filters.median_filter: 0.598 s
using blist.blist: 0.234 s
using list: 0.109 s
using blist.sortedlist: 0.894 s
using sortedcontainers.SortedList: 0.323 s
Sequence length 100000, filter width 9999:
scipy.signal.medfilt: 85 s
scipy.signal.medfilt2d: 8.87 s
scipy.ndimage.filters.median_filter: 10.1 s
using blist.blist: 0.612 s
using list: 0.372 s
using blist.sortedlist: 1.59 s
using sortedcontainers.SortedList: 0.505 s
Author: Jan Schlüter
"""
import sys
import os
import numpy as np
import timeit
NUM_REPEATS = 3
NUM_ITER = 3
N = 100000
DATA = None
# Three scipy implementations
import scipy.signal
import scipy.ndimage.filters
def scipy_signal(data, width):
return scipy.signal.medfilt(data, width)
def scipy_signal2d(data, width):
return scipy.signal.medfilt2d(data.reshape(1, -1), (1, width))[0]
def scipy_ndimage(data, width):
return scipy.ndimage.filters.median_filter(data, width)
# An implementation using blist or list, with code adopted
# from http://code.activestate.com/recipes/576930/#c3
# Note that this applies the median filter over the past values,
# while scipy applies it half to the past and half to the future.
# This is not critical to assess performance, though.
from collections import deque
from bisect import bisect_left, insort
from blist import blist
def custom_algorithm(data, width, listclass):
l = listclass(data[0].repeat(width))
#l.sort() # not needed because all values are the same here
mididx = (width - 1) // 2
result = np.empty_like(data)
for idx, new_elem in enumerate(data):
old_elem = data[max(0, idx - width)]
del l[bisect_left(l, old_elem)]
insort(l, new_elem)
result[idx] = l[mididx]
def using_blist(data, width):
return custom_algorithm(data, width, blist)
def using_list(data, width):
return custom_algorithm(data, width, list)
# A similar implementation using blist.sortedlist or sortedcontainers.SortedList
from blist import sortedlist as blist_sortedlist
from sortedcontainers import SortedList as sortcont_SortedList
def custom_algorithm2(data, width, sortedlistclass):
l = sortedlistclass(data[0].repeat(width))
mididx = (width - 1) // 2
result = np.empty_like(data)
for idx, new_elem in enumerate(data):
old_elem = data[max(0, idx - width)]
l.remove(old_elem)
l.add(new_elem)
result[idx] = l[mididx]
def using_blist_sortedlist(data, width):
return custom_algorithm2(data, width, blist_sortedlist)
def using_sortedcontainers(data, width):
return custom_algorithm2(data, width, sortcont_SortedList)
# The benchmark code
def run_benchmark(width):
print "Sequence length %d, filter width %d:" % (len(DATA), width)
print " scipy.signal.medfilt:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, scipy_signal",
stmt="scipy_signal(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
print " scipy.signal.medfilt2d:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, scipy_signal2d",
stmt="scipy_signal2d(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
print " scipy.ndimage.filters.median_filter:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, scipy_ndimage",
stmt="scipy_ndimage(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
print " using blist.blist:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, using_blist",
stmt="using_blist(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
print " using list:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, using_list",
stmt="using_list(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
print " using blist.sortedlist:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, using_blist_sortedlist",
stmt="using_blist_sortedlist(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
print " using sortedcontainers.SortedList:",
sys.stdout.flush()
t = min(timeit.repeat(
setup="from __main__ import DATA, using_sortedcontainers",
stmt="using_sortedcontainers(DATA, %d)" % width, repeat=NUM_REPEATS,
number=NUM_ITER)) / float(NUM_ITER)
print "%.3g s" % t
def main():
global DATA
DATA = np.random.randn(N)
for width in 49, 99, 599, 9999:
run_benchmark(width)
if __name__=="__main__":
main()
@f0k
Copy link
Author

f0k commented May 11, 2016

Oh, only saw this now. Apparently github does not give notifications for gist comments, sorry.

You import a deque but don't use it in custom_algorithm nor custom_algorithm2. I think you need that to know what value to remove.

Oops, that seems to have been a leftover. I'm targeting the case of having random access to the incoming data instead of a stream, so I can directly see which value left the window when moving on and don't have to remember the data in a queue or cyclic buffer.

I'm not sure what value data[max(0, idx - width)] refers to?

That's exactly the value leaving the window! For the first width steps, it's always the first value of the array, that's what the max is for.

I experimented with larger window sizes. sortedcontainers.SortedList was faster than the list strategy at a window size of 20,000.

Good to know! That was outside my use case. I had window sizes between 50 and 200 and needed it to be fast (but not that fast that it was worth going into Cython or C).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment