Skip to content

Instantly share code, notes, and snippets.

@fabianp
Created December 2, 2011 14:17
Show Gist options
  • Save fabianp/1423373 to your computer and use it in GitHub Desktop.
Save fabianp/1423373 to your computer and use it in GitHub Desktop.
group lasso
import numpy as np
from scipy import linalg, optimize
MAX_ITER = 100
def group_lasso(X, y, alpha, groups, max_iter=MAX_ITER, rtol=1e-6,
verbose=False):
"""
Linear least-squares with l2/l1 regularization solver.
Solves problem of the form:
.5 * |Xb - y| + n_samples * alpha * Sum(w_j * |b_j|)
where |.| is the l2-norm and b_j is the coefficients of b in the
j-th group. This is commonly known as the `group lasso`.
Parameters
----------
X : array of shape (n_samples, n_features)
Design Matrix.
y : array of shape (n_samples,)
alpha : float or array
Amount of penalization to use.
groups : array of shape (n_features,)
Group label. For each column, it indicates
its group apertenance.
rtol : float
Relative tolerance. ensures ||(x - x_) / x_|| < rtol,
where x_ is the approximate solution and x is the
true solution.
Returns
-------
x : array
vector of coefficients
References
----------
"Efficient Block-coordinate Descent Algorithms for the Group Lasso",
Qin, Scheninberg, Goldfarb
"""
# .. local variables ..
X, y, groups, alpha = map(np.asanyarray, (X, y, groups, alpha))
if len(groups) != X.shape[1]:
raise ValueError("Incorrect shape for groups")
w_new = np.zeros(X.shape[1], dtype=X.dtype)
alpha = alpha * X.shape[0]
# .. use integer indices for groups ..
group_labels = [np.where(groups == i)[0] for i in np.unique(groups)]
H_groups = [np.dot(X[:, g].T, X[:, g]) for g in group_labels]
eig = map(linalg.eigh, H_groups)
Xy = np.dot(X.T, y)
initial_guess = np.zeros(len(group_labels))
def f(x, qp2, eigvals, alpha):
return 1 - np.sum( qp2 / ((x * eigvals + alpha) ** 2))
def df(x, qp2, eigvals, penalty):
# .. first derivative ..
return np.sum((2 * qp2 * eigvals) / ((penalty + x * eigvals) ** 3))
if X.shape[0] > X.shape[1]:
H = np.dot(X.T, X)
else:
H = None
for n_iter in range(max_iter):
w_old = w_new.copy()
for i, g in enumerate(group_labels):
# .. shrinkage operator ..
eigvals, eigvects = eig[i]
w_i = w_new.copy()
w_i[g] = 0.
if H is not None:
X_residual = np.dot(H[g], w_i) - Xy[g]
else:
X_residual = np.dot(X.T, np.dot(X[:, g], w_i)) - Xy[g]
qp = np.dot(eigvects.T, X_residual)
if len(g) < 2:
# for single groups we know a closed form solution
w_new[g] = - np.sign(X_residual) * max(abs(X_residual) - alpha, 0)
else:
if alpha < linalg.norm(X_residual, 2):
initial_guess[i] = optimize.newton(f, initial_guess[i], df, tol=.5,
args=(qp ** 2, eigvals, alpha))
w_new[g] = - initial_guess[i] * np.dot(eigvects / (eigvals * initial_guess[i] + alpha), qp)
else:
w_new[g] = 0.
# .. dual gap ..
max_inc = linalg.norm(w_old - w_new, np.inf)
if True: #max_inc < rtol * np.amax(w_new):
residual = np.dot(X, w_new) - y
group_norm = alpha * np.sum([linalg.norm(w_new[g], 2)
for g in group_labels])
if H is not None:
norm_Anu = [linalg.norm(np.dot(H[g], w_new) - Xy[g]) \
for g in group_labels]
else:
norm_Anu = [linalg.norm(np.dot(H[g], residual)) \
for g in group_labels]
if np.any(norm_Anu > alpha):
nnu = residual * np.min(alpha / norm_Anu)
else:
nnu = residual
primal_obj = .5 * np.dot(residual, residual) + group_norm
dual_obj = -.5 * np.dot(nnu, nnu) - np.dot(nnu, y)
dual_gap = primal_obj - dual_obj
if verbose:
print 'Relative error: %s' % (dual_gap / dual_obj)
if np.abs(dual_gap / dual_obj) < rtol:
break
return w_new
def check_kkt(A, b, x, penalty, groups):
"""Check KKT conditions for the group lasso
Returns True if conditions are satisfied, False otherwise
"""
group_labels = [groups == i for i in np.unique(groups)]
penalty = penalty * A.shape[0]
z = np.dot(A.T, np.dot(A, x) - b)
safety_net = 1e-1 # sort of tolerance
for g in group_labels:
if linalg.norm(x[g]) == 0:
if not linalg.norm(z[g]) < penalty + safety_net:
return False
else:
w = - penalty * x[g] / linalg.norm(x[g], 2)
if not np.allclose(z[g], w, safety_net):
return False
return True
if __name__ == '__main__':
from sklearn import datasets
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
alpha = .1
groups = np.r_[[0, 0], np.arange(X.shape[1] - 2)]
coefs = group_lasso(X, y, alpha, groups, verbose=True)
print 'KKT conditions verified:', check_kkt(X, y, coefs, alpha, groups)
@lorepozo
Copy link

I'm getting some some bad results for the accuracy. The docstring says the purpose of rtol is for ||(x - x_) / x_|| < rtol, but once the tolerance is (supposedly) met and the loop exits, the relative error can be verified untrue. Try adding these two lines to the end of the __main__ section:

y_ = np.dot(X, coefs)
print 'error:', sum( (y - y_) / y_ )

Running this on your code as-is yields a large error of 19414. Am I misunderstanding something, or might this code be broken?

@Sandy4321
Copy link

any updates ?

@fabianp
Copy link
Author

fabianp commented Aug 25, 2019

I maintain a more flexible version of this code in the copt library, see here for an example: http://openopt.github.io/copt/auto_examples/plot_group_lasso.html#sphx-glr-auto-examples-plot-group-lasso-py

@Sandy4321
Copy link

Looks great
Thanks
Let me see it

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment