Last active
December 17, 2015 02:08
-
-
Save fabianp/5533111 to your computer and use it in GitHub Desktop.
Benchmark different solvers in scikit-learn's Ridge
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import numpy as np | |
from sklearn import linear_model | |
from datetime import datetime | |
import pylab as pl | |
import pylab | |
def errorfill(x, y, yerr, color=None, alpha_fill=0.3, ax=None, label=None): | |
# helper function, stolen from http://tonysyu.github.com/plotting-error-bars.html | |
ax = ax if ax is not None else pl.gca() | |
if color is None: | |
color = ax._get_lines.color_cycle.next() | |
if np.isscalar(yerr) or len(yerr) == len(y): | |
ymin = y - yerr | |
ymax = y + yerr | |
elif len(yerr) == 2: | |
ymin, ymax = yerr | |
ax.plot(x, y, color=color, label=label) | |
ax.fill_between(x, ymax, ymin, color=color, alpha=alpha_fill) | |
def bench_features(): | |
n_samples = 1000 | |
timings = {} | |
for solver in ('svd', 'dense_cholesky', 'lsqr', 'sparse_cg'): | |
timings[solver] = [] | |
print('Solver: %s' % solver) | |
features = np.linspace(100, 1000, 10).astype(np.int) | |
for n_features in features: | |
for _ in range(5): # perform five runs | |
w = np.random.randn(n_features) | |
X = np.random.randn(n_samples, n_features) | |
y = X.dot(w) + .1 * np.random.randn(n_samples) | |
clf = linear_model.Ridge(solver=solver) | |
start = datetime.now() | |
clf.fit(X, y) | |
elapsed = datetime.now() - start | |
timings[solver].append(elapsed.total_seconds()) | |
print(elapsed) | |
for s in timings.keys(): | |
tmp = np.array(timings[s]).reshape((-1, 5)) | |
errorfill(features, tmp.mean(1), tmp.std(1), label=s) | |
pylab.ylim((0, tmp.mean(1).max())) | |
pl.legend(loc='upper left') | |
pl.xlabel('Number of features') | |
pl.ylabel('Seconds') | |
pl.show() | |
def bench_samples(): | |
n_samples = 1000 | |
timings = {} | |
for solver in ('svd', 'dense_cholesky', 'lsqr', 'sparse_cg'): | |
timings[solver] = [] | |
print('Solver: %s' % solver) | |
features = np.linspace(100, 1000, 10).astype(np.int) | |
for n_features in features: | |
for _ in range(5): # perform five runs | |
w = np.random.randn(n_features) | |
X = np.random.randn(n_samples, n_features) | |
y = X.dot(w) + .1 * np.random.randn(n_samples) | |
clf = linear_model.Ridge(solver=solver) | |
start = datetime.now() | |
clf.fit(X, y) | |
elapsed = datetime.now() - start | |
timings[solver].append(elapsed.total_seconds()) | |
print(elapsed) | |
for s in timings.keys(): | |
tmp = np.array(timings[s]).reshape((-1, 5)) | |
errorfill(features, tmp.mean(1), tmp.std(1), label=s) | |
pylab.ylim((0, tmp.mean(1).max())) | |
pl.legend(loc='upper left') | |
pl.xlabel('Number of samples') | |
pl.ylabel('Seconds') | |
pl.show() | |
bench_features() | |
bench_samples() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# benchmark using the hilbert matrix | |
from __future__ import print_function | |
import numpy as np | |
from sklearn import linear_model | |
from datetime import datetime | |
import pylab as pl | |
from scipy import linalg | |
def errorfill(x, y, yerr, color=None, alpha_fill=0.3, ax=None, label=None): | |
# helper function, stolen from http://tonysyu.github.com/plotting-error-bars.html | |
ax = ax if ax is not None else pl.gca() | |
if color is None: | |
color = ax._get_lines.color_cycle.next() | |
if np.isscalar(yerr) or len(yerr) == len(y): | |
ymin = y - yerr | |
ymax = y + yerr | |
elif len(yerr) == 2: | |
ymin, ymax = yerr | |
ax.plot(x, y, color=color, label=label) | |
ax.fill_between(x, ymax, ymin, color=color, alpha=alpha_fill) | |
def bench_features(): | |
n_samples = 1000 | |
timings = {} | |
for solver in ('lsqr', 'sparse_cg'): | |
timings[solver] = [] | |
print('Solver: %s' % solver) | |
features = np.linspace(100, 1000, 10).astype(np.int) | |
for n_features in features: | |
for _ in range(20): # perform five runs | |
w = np.random.randn(n_features) | |
X = linalg.hilbert(max(n_samples, n_features))[:n_samples, :n_features] | |
y = X.dot(w) + .5 * np.random.randn(n_samples) | |
clf = linear_model.Ridge(solver=solver, alpha=1e-6) | |
start = datetime.now() | |
clf.fit(X, y) | |
elapsed = datetime.now() - start | |
timings[solver].append(elapsed.total_seconds()) | |
print(elapsed) | |
for s in timings.keys(): | |
tmp = np.array(timings[s]).reshape((-1, 20)) | |
errorfill(features, tmp.mean(1), tmp.std(1), label=s) | |
pylab.ylim((0, tmp.mean(1).max())) | |
pl.legend(loc='upper left') | |
pl.xlabel('Number of features') | |
pl.ylabel('Seconds') | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment