[TOC]
table(complete.cases(df)) # returns logical vector
imput_age <- lm(age~., data = full_imp)
summary(imput_age)
imp_age <- predict(imput_age, full_imp[which(is.na(age), arr.ind = T), ])
select all where age is NA
full_imp[is.na(full_imp[, age]), age := .(imp_age)]
sapply(dataframe, function(x) sum(is.na(x)))
mvc <- sapply(ds[vars], function(x) sum(is.na(x)))
mvn <- names(which(mvc == nrow(ds)))
ignore <- union(ignore, mvn)
mvc <- sapply(ds[vars], function(x) sum(is.na(x)))
mvn <- names(which(mvc >= 0.7*nrow(ds)))
ignore <- union(ignore, mvn)
factors <- which(sapply(ds[vars], is.factor))
for (f in factors) levels(ds[[f]]) <- normVarNames(levels(ds[[f]]))
na.omit(merge) # full range
merge[complete.cases(merge[,2:3]),] # keep columns with values complete in column 2+3
ds <- ds[!is.na(ds[target]),]
sum(is.na(ds[target]))