[TOC]
import pandas as pd
data = pd.read_csv("http://www.google.de")
df = pd.read_csv('../data/example.csv', header=None)
df = pd.read_csv('../data/example.csv', na_values=['.']) # specifying "." as missing values
df = pd.read_csv('../data/example.csv', na_values={'Last Name': ['.', 'NA'], 'Pre-Test Score': ['.']}) # specifying "." and "NA" as missing values in the Last Name column and "." as missing values in Pre-Test Score column
df = pd.read_csv('../data/example.csv', na_values=sentinels, skiprows=3) # skipping the top 3 rows
df = pd.read_csv('../data/example.csv', thousands=',') # interpreting "," in strings around numbers as thousands seperators
dateparse = lambda dates: pd.datetime.strptime(dates, '%Y')
data = pd.read_csv(in_file, parse_dates='Month', index_col='Month',date_parser=dateparse)
xls_file = pd.ExcelFile('../data/example.xls')
df = xls_file.parse('Sheet1')
df.to_csv("../submission.csv", index = False)