Created
March 5, 2023 19:24
-
-
Save faizanbashir/f4411801901a51a3cb1f93402611d3f5 to your computer and use it in GitHub Desktop.
Building a ChatGPT-based AI Assistant with Python: Speech-to-Text and Text-to-Speech using OpenAI APIs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import os | |
import speech_recognition as sr | |
import requests | |
import pyttsx3 | |
def main(): | |
openaiurl = "https://api.openai.com/v1" | |
openai_token = os.environ.get("OPENAI_API_TOKEN") | |
if openai_token == "": | |
os.exit(1) | |
headers = { "Authorization" : f"Bearer {openai_token}" } | |
################################################################### | |
### 1. Record using microphone ### | |
################################################################### | |
print("[-] Record audio using microphone") | |
# obtain audio from the microphone | |
r = sr.Recognizer() | |
with sr.Microphone() as source: | |
r.adjust_for_ambient_noise(source) | |
print("Say something!") | |
audio = r.listen(source) | |
folder = "./audio" | |
filename = "microphone-results" | |
audio_file_path = f"{folder}/{filename}.wav" | |
if not os.path.exists(folder): | |
os.mkdir(folder) | |
# write audio to a WAV file | |
print(f"Generating WAV file, saving at location: {audio_file_path}") | |
with open(audio_file_path, "wb") as f: | |
f.write(audio.get_wav_data()) | |
################################################################### | |
### 2. Call to Whisper API's and getting result ### | |
################################################################### | |
print("[-] Call to Whisper API's to get the STT response") | |
url = f"{openaiurl}/audio/transcriptions" | |
data = { | |
"model": "whisper-1", | |
"file": audio_file_path, | |
} | |
files = { | |
"file": open(audio_file_path, "rb") | |
} | |
response = requests.post(url, files=files, data=data, headers=headers) | |
print("Status Code", response.status_code) | |
speech_to_text = response.json()["text"] | |
print("Response from Whisper API's", speech_to_text) | |
################################################################### | |
### 3. Query ChatGPT model with the text get the response ### | |
################################################################### | |
print("[-] Querying ChatGPT model with the STT response data") | |
url = f"{openaiurl}/chat/completions" | |
data = { | |
"model": "gpt-3.5-turbo", | |
"messages": [ | |
{ | |
"role": "user", | |
"content": speech_to_text | |
} | |
] | |
} | |
response = requests.post(url, json=data, headers=headers) | |
print("Status Code", response.status_code) | |
chatgpt_response = response.json()["choices"][0]["message"]["content"] | |
print("Response from ChatGPT model ", chatgpt_response) | |
################################################################### | |
### 4. Try to convert TTS from the response ### | |
################################################################### | |
print("[-] Try to convert TTS from the response") | |
engine = pyttsx3.init() | |
engine.setProperty('rate', 175) | |
print("Converting text to speech...") | |
engine.say(chatgpt_response) | |
engine.runAndWait() | |
engine.stop() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment