Last active
October 6, 2024 16:30
-
-
Save fanghuiz/cfe8eed33ebbdeaa47aba5f4f1e93c30 to your computer and use it in GitHub Desktop.
Script to generate a color timeline based on video input (movie etc.) Modified from https://github.com/lint/avg-color-bar
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from PIL import Image, ImageEnhance | |
import os | |
import subprocess | |
import sys | |
# Requires ffmpeg https://www.ffmpeg.org/ffmpeg.html | |
# Run script as | |
# python movie_color_bar.py input_video output_frame_folder output_image | |
# 1st arg - video | |
input_video = str(sys.argv[1]) | |
# 2nd arg - directory to save frame images in | |
output_frame_folder = str(sys.argv[2]) | |
# 3rd arg - name of output | |
output_image = str(sys.argv[3]) | |
# Save frame images as 0001.jpg, 0002.jpg etc | |
output_frames = output_frame_folder + "/%04d.jpg" | |
# Run the following shell command | |
# ffmpeg -i video.mp4 -vf fps=.25 images/%04d.jpg | |
subprocess.check_output(["ffmpeg", "-i", input_video, | |
"-vf", "fps=0.25", output_frames]) | |
# The command will call ffmpeg to convert video.mp4 into images | |
# 0.25fps speed - we get one still image per 4 seconds of video. Can be adjusted | |
# Images will be saved in folder specied in output_frames arg | |
# Reading in the image paths | |
images = [output_frame_folder + "/" + | |
x for x in os.listdir(output_frame_folder)] | |
# Sort the images so they are in chronolocal order, 0001, 0002 ... 0999 etc | |
images.sort(key=lambda x: os.path.split(x)[1]) | |
# Function to find average RGB values in an image | |
def getAvgRGB(img): | |
# Converting image to rgb | |
img = img.convert("RGB") | |
# Getting colors used in the image, returns (count, [r,g,b]) | |
colors = img.getcolors(img.size[0] * img.size[1]) | |
# Get average RGB of the image - sum(r * Count) / sum(Count) | |
r = sum([i[1][0] * i[0] for i in colors]) / sum([i[0] for i in colors]) | |
g = sum([i[1][1] * i[0] for i in colors]) / sum([i[0] for i in colors]) | |
b = sum([i[1][2] * i[0] for i in colors]) / sum([i[0] for i in colors]) | |
r = int(r) | |
g = int(g) | |
b = int(b) | |
avg = tuple((r, g, b)) | |
return avg | |
barColors = [] | |
# Get the color for each frame | |
for img in images: | |
img = Image.open(img).resize((50, 20)) | |
color = getAvgRGB(img) | |
barColors.append(color) | |
# Initialize image | |
barImg = Image.new( | |
"RGB", (len(barColors), max([1, int(len(barColors) / 2.5)]))) | |
# Add bars to the image | |
barFullData = [x for x in barColors] * barImg.size[1] | |
# Make image | |
barImg.putdata(barFullData) | |
# Uncomment to adjust image saturation. | |
# converter = ImageEnhance.Color(barImg) | |
# converter.enhance(1.7).save(output_image) | |
# Save to path specified in output_image arg | |
barImg.save(output_image) |
malikata43
commented
Dec 4, 2020
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment