Skip to content

Instantly share code, notes, and snippets.

@farhaven
Forked from macournoyer/Output
Created February 1, 2019 10:33
Show Gist options
  • Save farhaven/de396307ab1aa2449fc7abb6cbedac58 to your computer and use it in GitHub Desktop.
Save farhaven/de396307ab1aa2449fc7abb6cbedac58 to your computer and use it in GitHub Desktop.
A Neural Network framework in 25 LOC
import numpy as np
# Activation functions
def tanh(x):
return np.tanh(x)
# Derivative of tanh from its output
def dtanh(y):
return 1 - y ** 2
# The neural network framework
class Layer:
def __init__(self, num_inputs, num_outputs):
# Init all weights between [-1 .. 1].
# Each input is connected to all outputs.
# One line per input and one column per output.
self.weights = np.random.uniform(-1, 1, (num_inputs, num_outputs))
def forward(self, input):
self.output = tanh(input.dot(self.weights))
return self.output
def computeGradient(self, error):
self.delta = error * dtanh(self.output)
# Returns the gradient
return self.delta.dot(self.weights.T)
def updateWeights(self, input, learning_rate):
self.weights += input.T.dot(self.delta) * learning_rate
class Network:
def __init__(self, layers):
self.layers = layers
def forward(self, input):
output = input
for layer in self.layers:
output = layer.forward(output)
return output
def backprop(self, input, error, learning_rate):
# Compute deltas at each layer starting from the last one
for layer in reversed(self.layers):
error = layer.computeGradient(error)
# Update the weights
for layer in self.layers:
layer.updateWeights(input, learning_rate)
input = layer.output
$ python xor.py
Training:
Epoch 0 MSE: 1.765
Epoch 100 MSE: 0.015
Epoch 200 MSE: 0.005
* Target MSE reached *
Evaluating:
1 XOR 0 = 1 ( 0.904) Error: 0.096
0 XOR 1 = 1 ( 0.908) Error: 0.092
1 XOR 1 = 0 (-0.008) Error: 0.008
0 XOR 0 = 0 ( 0.000) Error: 0.000
import numpy as np
import nn
# Training examples
examples = [
# _ XOR _ = _
[ np.array([[ 0, 0 ]]), np.array([[ 0 ]]) ],
[ np.array([[ 0, 1 ]]), np.array([[ 1 ]]) ],
[ np.array([[ 1, 0 ]]), np.array([[ 1 ]]) ],
[ np.array([[ 1, 1 ]]), np.array([[ 0 ]]) ]
]
# Seed random generator to get consistent results
np.random.seed(0)
# Build the model
num_inputs = 2
num_hidden = 20 # nodes in hidden layer
num_output = 1
network = nn.Network([
nn.Layer(num_inputs, num_hidden),
nn.Layer(num_hidden, num_output)
])
# Train the model
print("Training:")
learning_rate = 0.1
target_mse = 0.01
for epoch in range(500):
errors = []
for input, target in examples:
# Forward
output = network.forward(input)
# Compute the error
error = target - output
errors.append(error)
# Back-propagate the error
network.backprop(input, error, learning_rate)
# Compute the Mean Squared Error of all examples each 100 epoch
if epoch % 100 == 0:
mse = (np.array(errors) ** 2).mean()
print(" Epoch %3d MSE: %.3f" % (epoch, mse))
if mse <= target_mse:
print(" * Target MSE reached *")
break
# Evaluate the model
def eval(x, y):
output = network.forward(x)
normalized = int(round(output[0]))
error = y - output[0]
return "%d (% .3f) Error: %.3f" % (normalized, output[0], error)
print("Evaluating:")
print(" 1 XOR 0 = " + eval(np.array([1, 0]), 1))
print(" 0 XOR 1 = " + eval(np.array([0, 1]), 1))
print(" 1 XOR 1 = " + eval(np.array([1, 1]), 0))
print(" 0 XOR 0 = " + eval(np.array([0, 0]), 0))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment