Created
February 19, 2019 11:56
-
-
Save farizrahman4u/e4e7ad935dc85e7c43b9d21eacb1f42d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.preprocessing.sequence import pad_sequences | |
import numpy as np | |
import json | |
import random | |
# indexes | |
word2idx = {} | |
idx2word = {} | |
tag2idx = {} | |
idx2tag = {} | |
def get_word(idx): | |
if idx == 0: | |
return "<UNK>" | |
return idx2word[idx] | |
def get_word_idx(word, add_new=False): | |
if word not in word2idx: | |
if add_new: | |
idx = len(word2idx) + 2 | |
word2idx[word] = idx | |
idx2word[idx] = word | |
return idx | |
else: | |
return 0 | |
return word2idx[word] | |
def get_tag(idx): | |
return idx2tag[idx] | |
def get_tag_idx(tag, add_new=False): | |
if tag not in tag2idx: | |
if add_new: | |
idx = len(tag2idx) + 1 | |
tag2idx[tag] = idx | |
idx2tag[idx] = tag | |
return idx | |
else: | |
return 0 | |
return tag2idx[tag] | |
def vectorize_sentence(sentence): | |
''' | |
# Arguments: | |
sentence: list of string | |
''' | |
return [get_word_idx(word, True) for word in sentence] | |
def vectorize_tags(tags): | |
''' | |
# Arguments: | |
tags: list of string | |
''' | |
return [get_tag_idx(tag, True) for tag in tags] | |
def get_data(test_split=0.1): | |
with open('data/data.json', 'r') as f: | |
rows = json.load(f) | |
X = [] | |
Y = [] | |
for row in rows: | |
sentance, poss, tags = row | |
x = vectorize_sentence(sentance) | |
y = vectorize_tags(tags) | |
X.append(x) | |
Y.append(y) | |
# save indexes for later use | |
with open('idexes.json', 'w') as f: | |
json.dump([word2idx, idx2tag, tag2idx, idx2tag], f) | |
# shuffle | |
idxs = list(range(len(X))) | |
random.shuffle(idxs) | |
X = [X[i] for i in idxs] | |
Y = [Y[i] for i in idxs] | |
# padding | |
X = pad_sequences(X, padding='post') | |
Y = pad_sequences(Y, padding='post') | |
if test_split is None: | |
return X, Y | |
else: | |
num_test_samples = int(len(X) * test_split) | |
X_train = X[:-num_test_samples] | |
Y_train = Y[:-num_test_samples] | |
X_test = X[-num_test_samples:] | |
Y_test = Y[-num_test_samples:] | |
train_data = X_train, Y_train | |
test_data = X_test, Y_test | |
return train_data, test_data |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment