homicide Asian NYS deaths: https://wonder.cdc.gov/controller/saved/D76/D291F899
motor vehicle Asian NYS deaths: https://wonder.cdc.gov/controller/saved/D76/D291F900
suicide Asian NYS deaths: https://wonder.cdc.gov/controller/saved/D76/D291F901
homicide Asian NYS deaths: https://wonder.cdc.gov/controller/saved/D76/D291F899
motor vehicle Asian NYS deaths: https://wonder.cdc.gov/controller/saved/D76/D291F900
suicide Asian NYS deaths: https://wonder.cdc.gov/controller/saved/D76/D291F901
import pylab as plt | |
plt.style.use('ggplot') | |
plt.ion() | |
import pandas as pd | |
df = pd.read_csv("wonder.tsv", sep="\t", index_col=0) | |
ret = (df[["homicide", "motor", "suicide"]].div(df.total, axis=0) * | |
100e3).plot(grid=True, marker='.') | |
plt.title('New York State, Asian deaths per 100,000') | |
ret.lines[1].set_linestyle("--") | |
ret.lines[2].set_linestyle("-.") | |
ret.lines[2].set_marker("x") | |
plt.legend() | |
ret2 = (df[["motor", "suicide"]].div(df.homicide, axis=0)).plot(grid=True, | |
marker='.') | |
ret2.lines[1].set_linestyle("--") | |
ret2.lines[1].set_marker("x") | |
ret2.lines[0].set_label('motor vechiles per homicide') | |
ret2.lines[1].set_label('suicide per homicide') | |
plt.legend() | |
plt.title('New York State, Asian, deaths per homicide (CDC)') | |
plt.axhline(y=1, color='k', linestyle='-') |
year | homicide | total | motor | suicide | |
---|---|---|---|---|---|
1999 | 22 | 1122472 | 48 | 59 | |
2000 | 33 | 1157977 | 48 | 40 | |
2001 | 124 | 1213384 | 55 | 41 | |
2002 | 32 | 1255048 | 50 | 51 | |
2003 | 24 | 1293519 | 53 | 54 | |
2004 | 23 | 1327853 | 59 | 61 | |
2005 | 23 | 1362726 | 52 | 74 | |
2006 | 20 | 1398778 | 61 | 63 | |
2007 | 15 | 1439779 | 67 | 72 | |
2008 | 20 | 1485783 | 53 | 69 | |
2009 | 24 | 1529520 | 50 | 68 | |
2010 | 17 | 1561960 | 58 | 78 | |
2011 | 20 | 1599823 | 63 | 92 | |
2012 | 13 | 1650175 | 55 | 92 | |
2013 | 20 | 1697670 | 59 | 100 | |
2014 | 21 | 1767565 | 57 | 100 | |
2015 | 15 | 1826093 | 51 | 98 | |
2016 | 18 | 1844346 | 52 | 91 | |
2017 | 20 | 1902407 | 52 | 99 | |
2018 | 12 | 1846015 | 49 | 100 | |
2019 | 22 | 1850616 | 61 | 124 | |
2020 | 10 | 1881911 | 54 | 107 |