Created
May 6, 2020 19:49
-
-
Save faustomilletari/af430acfecf0841d71508455cdadcbbf to your computer and use it in GitHub Desktop.
ABC challenge starter kit with Eisen
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Eisen ABC Challenge starter kit | |
NOTE: you need to register to the challenge, download and unpack the data in | |
order to be able to run the following example. | |
Find more info here: https://abcs.mgh.harvard.edu | |
This is released under MIT license. Do what you want with this code. | |
""" | |
from eisen.datasets import ABCDataset | |
from eisen.models.segmentation import VNet | |
from eisen.io import LoadITKFromFilename | |
from eisen.transforms import ( | |
ResampleITKVolumes, | |
ITKToNumpy, | |
CropCenteredSubVolumes, | |
AddChannelDimension, | |
MapValues, | |
FixedMeanStdNormalization, | |
LabelMapToOneHot, | |
StackImagesChannelwise, | |
FilterFields | |
) | |
from eisen.ops.losses import DiceLoss | |
from eisen.ops.metrics import DiceMetric | |
from eisen.utils import EisenModuleWrapper | |
from eisen.utils.workflows import Training | |
from eisen.utils.logging import LoggingHook | |
from eisen.utils.logging import TensorboardSummaryHook | |
from eisen.utils.artifacts import SaveTorchModelHook | |
from torchvision.transforms import Compose | |
from torch.utils.data import DataLoader | |
from torch.optim import Adam | |
""" | |
Constants defining important parameters of the algorithm. | |
CHANGE HERE WHAT SHOULD BE CHANGED TO FIT YOUR CONFIG. | |
""" | |
# Defining some constants | |
PATH_DATA = './abc_data' # path of data as unpacked from the challenge files | |
PATH_ARTIFACTS = './results' # path for model results | |
TASK = 'task1' | |
NUM_EPOCHS = 100 | |
BATCH_SIZE = 2 | |
VOLUMES_RESOLUTION = [2, 2, 1.5] | |
VOLUMES_PIXEL_SIZE = [128, 128, 128] | |
if TASK == 'task1': | |
n_out_chan = 5 | |
label_field = 'label_task1' | |
else: | |
n_out_chan = 10 | |
label_field = 'label_task2' | |
""" | |
Define Readers and Transforms | |
In order to load data and prepare it for being used by the network, we need to operate | |
I/O operations and define transforms to standardize data. | |
You can add transforms or change the existing ones by editing this | |
""" | |
# readers: for images and labels | |
read_tform = LoadITKFromFilename(['ct', 't1', 't2', label_field], PATH_DATA) | |
# image manipulation transforms | |
resample_tform_img = ResampleITKVolumes( | |
['ct', 't1', 't2'], | |
VOLUMES_RESOLUTION, | |
'linear' | |
) | |
resample_tform_lbl = ResampleITKVolumes( | |
[label_field], | |
VOLUMES_RESOLUTION, | |
'nearest' | |
) | |
to_numpy_tform = ITKToNumpy(['ct', 't1', 't2', label_field]) | |
crop = CropCenteredSubVolumes(fields=['ct', 't1', 't2', label_field], size=VOLUMES_PIXEL_SIZE) | |
map_intensities = MapValues(['t1', 't2'], min_value=0.0, max_value=1.0) | |
normalize_ct = FixedMeanStdNormalization(['ct'], mean=208.0, std=388.0) | |
if TASK == 'task1': | |
map_labels = LabelMapToOneHot([label_field], [1, 2, 3, 4, 5]) | |
else: | |
map_labels = LabelMapToOneHot([label_field], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) | |
stack_modalities = StackImagesChannelwise(['ct', 't1', 't2'], 'image') | |
preserve_only_fields = FilterFields(['image', 'label_task1']) | |
# create a transform to manipulate and load data | |
tform = Compose([ | |
read_tform, | |
resample_tform_img, | |
resample_tform_lbl, | |
to_numpy_tform, | |
crop, | |
map_intensities, | |
normalize_ct, | |
map_labels, | |
stack_modalities, | |
preserve_only_fields | |
]) | |
# create a dataset from the training set of the ABC dataset | |
dataset = ABCDataset( | |
PATH_DATA, | |
training=True, | |
flat_dir_structure=False, # check documentation | |
transform=tform | |
) | |
# Data loader: a pytorch DataLoader is used here to loop through the data as provided by the dataset. | |
data_loader = DataLoader( | |
dataset, | |
batch_size=BATCH_SIZE, | |
shuffle=True, | |
num_workers=4 | |
) | |
""" | |
Building blocks: we define here: | |
* model | |
* loss | |
* metric | |
* optimizer | |
These components are used during training. | |
These blocks will be joined together in a workflow (Eg. training workflow). | |
""" | |
# specify model and loss (building blocks) | |
model = EisenModuleWrapper( | |
module=VNet(input_channels=3, output_channels=n_out_chan), | |
input_names=['image'], | |
output_names=['predictions'] | |
) | |
# CHANGE TASK HERE if needed!! | |
loss = EisenModuleWrapper( | |
module=DiceLoss(dim=[2, 3, 4]), | |
input_names=['predictions', label_field], | |
output_names=['dice_loss'] | |
) | |
# CHANGE TASK HERE if needed!! | |
metric = EisenModuleWrapper( | |
module=DiceMetric(dim=[2, 3, 4]), | |
input_names=['predictions', label_field], | |
output_names=['dice_metric'] | |
) | |
optimizer = Adam(model.parameters(), 0.001) | |
# join all blocks into a workflow (training workflow) | |
training_workflow = Training( | |
model=model, | |
losses=[loss], | |
data_loader=data_loader, | |
optimizer=optimizer, | |
metrics=[metric], | |
gpu=True | |
) | |
# create Hook to monitor training and save models | |
training_loggin_hook = LoggingHook(training_workflow.id, 'Training', PATH_ARTIFACTS) | |
training_summary_hook = TensorboardSummaryHook(training_workflow.id, 'Training', PATH_ARTIFACTS) | |
save_model_hook = SaveTorchModelHook(training_workflow.id, 'Training', PATH_ARTIFACTS) | |
# run optimization for NUM_EPOCHS | |
for i in range(NUM_EPOCHS): | |
training_workflow.run() | |
# todo: VALIDATION and INFERENCE code |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment